首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Earth orientation parameters estimated from VLBI during the CONT11 campaign   总被引:1,自引:1,他引:0  
In this paper we investigate the accuracy of the earth orientation parameters (EOP) estimated from the continuous VLBI campaign CONT11. We first estimated EOP with daily resolution and compared these to EOP estimated from GNSS data. We find that the WRMS differences are about 31  $\upmu $ as for polar motion and 7  $\upmu $ s for length of day. This is about the precision we could expect, based on Monte Carlo simulations and the results of the previous CONT campaigns. We also estimated EOP with hourly resolution to study the sub-diurnal variations. The results confirm the results of previous studies, showing that the current IERS model for high-frequency EOP variations does not explain all the sub-diurnal variations seen in the estimated time series. We then compared our results to various empirical high-frequency EOP models. However, we did not find that any of these gave any unambiguous improvement. Several simulations testing the impact of various aspects of, e.g. the observing network were also made. For example, we made simulations assuming that all CONT11 stations were equipped with fast VLBI2010 antennas. We found that the WRMS error decreased by about a factor five compared to the current VLBI system. Furthermore, the simulations showed that it is very important to have a homogenous global distribution of the stations for achieving the highest precision for the EOP.  相似文献   

2.
Continuous, very long baseline interferometry (VLBI) campaigns over 2 weeks have been carried out repeatedly, i.e., CONT02 in October 2002, CONT05 in September 2005, CONT08 in August 2008, and CONT11 in September 2011, to demonstrate the highest accuracy the current VLBI was capable at that time. In this study, we have compared zenith total delays (ZTD) and troposphere gradients as consistently estimated from the observations of VLBI, Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) at VLBI sites participating in the CONT campaigns. We analyzed the CONT campaigns using the state-of-the-art software following common processing strategies as closely as possible. In parallel, ZTD and gradients were derived from numerical weather models, i.e., from the global European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields, the High Resolution Limited Area Model (European sites), the Japan Meteorological Agency-Operational Meso-Analysis Field (MANAL, over Japan), and the Cloud Resolving Storm Simulator (Tsukuba, Japan). Finally, zenith wet delays were estimated from the observations of water vapor radiometers (WVR) at sites where the WVR observables are available during the CONT sessions. The best ZTD agreement, interpreted as the smallest standard deviation, was found between GNSS and VLBI techniques to be about 5–6 mm at most of the co-located sites and CONT campaigns. We did not detect any significant improvement in the ZTD agreement between various techniques over time, except for DORIS and MANAL. On the other hand, the agreement and thus the accuracy of the troposphere parameters mainly depend on the amount of humidity in the atmosphere.  相似文献   

3.
In this paper, a new geometry index of very long baseline interferometry (VLBI) observing networks, the volume of network V, is examined as an indicator of the errors in the Earth orientation parameters (EOP) obtained from VLBI observations. It has been shown that both EOP precision and accuracy can be well described by the power law σ = aV c in a wide range of the network size from domestic to global VLBI networks. In other words, as the network volume grows, the EOP errors become smaller following a power law. This should be taken into account for a proper comparison of EOP estimates obtained from different VLBI networks. Thus, performing correct EOP comparison allows us to investigate accurately finer factors affecting the EOP errors. In particular, it was found that the dependence of the EOP precision and accuracy on the recording data rate can also be described by a power law. One important conclusion is that the EOP accuracy depends primarily on the network geometry and to lesser extent on other factors, such as recording mode and data rate and scheduling parameters, whereas these factors have a stronger impact on the EOP precision.  相似文献   

4.
The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20–25 \(\upmu \)as in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.  相似文献   

5.
The source position time-series for many of the frequently observed radio sources in the NASA geodetic very long baseline interferometry (VLBI) program show systematic linear and non-linear variations of as much as 0.5 mas (milli-arc-seconds) to 1.0 mas, due mainly to source structure changes. In standard terrestrial reference frame (TRF) geodetic solutions, it is a common practice to only estimate a global source position for each source over the entire history of VLBI observing sessions. If apparent source position variations are not modeled, they produce corresponding systematic variations in estimated Earth orientation parameters (EOPs) at the level of 0.02–0.04 mas in nutation and 0.01–0.02 mas in polar motion. We examine the stability of position time-series of the 107 radio sources in the current NASA geodetic source catalog since these sources have relatively dense observing histories from which it is possible to detect systematic variations. We consider different strategies for handling source instabilities where we (1) estimate the positions of unstable sources for each session they are observed, or (2) estimate spline parameters or rate parameters for sources chosen to fit the specific variation seen in the position-time series. We found that some strategies improve VLBI EOP accuracy by reducing the biases and weighted root mean square differences between measurements from independent VLBI networks operating simultaneously. We discuss the problem of identifying frequently observed unstable sources and how to identify new sources to replace these unstable sources in the NASA VLBI geodetic source catalog.  相似文献   

6.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

7.
Combinations of station coordinates and velocities from independent space-geodetic techniques have long been the standard method to realize robust global terrestrial reference frames (TRFs). In principle, the particular strengths of one observing method can compensate for weaknesses in others if the combination is properly constructed, suitable weights are found, and accurate co-location ties are available. More recently, the methodology has been extended to combine time-series of results at the normal equation level. This allows Earth orientation parameters (EOPs) to be included and aligned in a fully consistent way with the TRF. While the utility of such multi-technique combinations is generally recognized for the reference frame, the benefits for the EOPs are yet to be quantitatively assessed. In this contribution, which is a sequel to a recent paper on co-location ties (Ray and Altamimi in J Geod 79(4–5): 189–195, 2005), we have studied test combinations of very long baseline interferometry (VLBI) and Global Positioning System (GPS) time-series solutions to evaluate the effects on combined EOP measurements compared with geophysical excitations. One expects any effect to be small, considering that GPS dominates the polar motion estimates due to its relatively dense and uniform global network coverage, high precision, continuous daily sampling, and homogeneity, while VLBI alone observes UT1-UTC. Presently, although clearly desirable, we see no practical method to rigorously include the GPS estimates of length-of-day variations due to significant time-varying biases. Nevertheless, our results, which are the first of this type, indicate that more accurate polar motion from GPS contributes to improved UT1-UTC results from VLBI. The situation with combined polar motion is more complex. The VLBI data contribute directly only very slightly, if at all, with an impact that is probably affected by the weakness of the current VLBI networks (small size and sparseness) and the quality of local ties relating the VLBI and GPS frames. Instead, the VLBI polar motion information is used primarily in rotationally aligning the VLBI and GPS frames, thereby reducing the dependence on co-location tie information. Further research is needed to determine an optimal VLBI-GPS combination strategy that yields the highest quality EOP estimates. Improved local ties (including internal systematic effects within the techniques) will be critically important in such an effort.  相似文献   

8.
We present earth rotation results from the ultra-rapid operations during the continuous VLBI campaigns CONT11 and CONT14. The baseline Onsala–Tsukuba, i.e., using two out of the 13 and 17 stations contributing to CONT11 and CONT14, respectively, was used to derive UT1-UTC in ultra-rapid mode during the ongoing campaigns. The latency between a new observation and a new UT1-UTC result was less than 10 min for more than 95% of the observations. The accuracy of the derived ultra-rapid UT1-UTC results is approximately a factor of three worse than results from optimized one-baseline sessions and/or complete analysis of large VLBI networks. This is, however, due to that the one-baseline picked from the CONT campaigns is not optimized for earth rotation determination. Our results prove that the 24/7 operation mode planned for VGOS, the next-generation VLBI system, is possible already today. However, further improvements in data connectivity of stations and correlators as well in the automated analysis are necessary to realize the ambitious VGOS plans.  相似文献   

9.
Earth orientation parameters (EOPs) provide a link between the International Celestial Reference Frame (ICRF) and the International Terrestrial Reference Frame (ITRF). Natural geodynamic processes, such as earthquakes, can cause the motion of stations to become discontinuous and/or non-linear, thereby corrupting the EOP estimates if the sites are assumed to move linearly. The VLBI antenna at the Gilcreek Geophysical Observatory has undergone non-linear, post-seismic motion as a result of the Mw=7.9 Denali earthquake in November 2002, yet some VLBI analysts have adopted co-seismic offsets and a linear velocity model to represent the motion of the site after the earthquake. Ignoring the effects of the Denali earthquake leads to error on the order of 300–600 μas for the EOP, while modelling the post-seismic motion of Gilcreek with a linear velocity generates errors of 20–50 μas. Only by modelling the site motion with a non-linear function is the same level of accuracy of EOP estimates maintained. The effect of post-seismic motion on EOP estimates derived from the International VLBI Service IVS-R1 and IVS-R4 networks are not the same, although changes in network geometries and equipment improvements have probably affected the estimates more significantly than the earthquake-induced deformation at Gilcreek.  相似文献   

10.
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of \(\varDelta \hbox {UT1}\) results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several \(\upmu \)as. Moreover, the CRF is influenced by up to \(50~\upmu \)as if the station coordinates and EOP are dominated by the satellite techniques.  相似文献   

11.
The geodetic VLBI community began using VLBA antennas in 1989 for geodesy and astrometry. We examine how usage of the VLBA has improved the celestial reference frame, the terrestrial reference frame, and Earth orientation parameters. Without the VLBA, ICRF2 would have had only 1011 sources instead of 3414. ICRF3 will contain at least 4121 sources, with approximately 70 % or more coming exclusively from VLBA astrometry and geodesy sessions. The terrestrial reference frame is also more stable and precise due to VLBA geodesy sessions. Approximately two dozen geodesy stations that have participated in VLBA sessions show average position formal errors that are \(\sim \)13–14 % better in the horizontal components and \(\sim \)5 % better in the vertical component than would be expected solely from the increased number of observations. Also the Earth orientation parameters obtained from the RDV sessions represent the most accurate EOP series of any of the long-term VLBI session types.  相似文献   

12.
We examine the contribution of the Doppler Orbit determination and Radiopositioning Integrated by Satellite (DORIS) technique to the International Terrestrial Reference Frame (ITRF2005) by evaluating the quality of the submitted solutions as well as that of the frame parameters, especially the origin and the scale. Unlike the previous versions of the ITRF, ITRF2005 is constructed with input data in the form of time-series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth orientation parameters (EOPs), including full variance–covariance information. Analysis of the DORIS station positions’ time-series indicates an internal precision reaching 15 mm or better, at a weekly sampling. A cumulative solution using 12 years of weekly time-series was obtained and compared to a similar International GNSS Service (IGS) GPS solution (at 37 co-located sites) yielding a weighted root mean scatter (WRMS) of the order of 8 mm in position (at the epoch of minimum variance) and about 2.5 mm/year in velocity. The quality of this cumulative solution resulting from the combination of two individual DORIS solutions is better than any individual solution. A quality assessment of polar motion embedded in the contributed DORIS solutions is performed by comparison with the results of other space-geodetic techniques and in particular GPS. The inferred WRMS of polar motion varies significantly from one DORIS solution to another and is between 0.5 and 2 mas, depending on the strategy used and in particular estimating or not polar motion rate by the analysis centers. This particular aspect certainly needs more investigation by the DORIS Analysis Centers.  相似文献   

13.
Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.  相似文献   

14.
We perform extensive simulations in order to assess the accuracy with which the position of a radio transmitter on the surface of the Moon can be determined by geodetic VLBI. We study how the quality and quantity of geodetic VLBI observations influence these position estimates and investigate how observations of such near-field objects affect classical geodetic parameters like VLBI station coordinates and Earth rotation parameters. Our studies are based on today’s global geodetic VLBI schedules as well as on those designed for the next-generation geodetic VLBI system. We use Monte Carlo simulations including realistic stochastic models of troposphere, station clocks, and observational noise. Our results indicate that it is possible to position a radio transmitter on the Moon using today’s geodetic VLBI with a two-dimensional horizontal accuracy of better than one meter. Moreover, we show that the next-generation geodetic VLBI has the potential to improve the two-dimensional accuracy to better than 5 cm. Thus, our results lay the base for novel observing concepts to improve both lunar research and geodetic VLBI.  相似文献   

15.
IGS contribution to the ITRF   总被引:2,自引:0,他引:2  
We examine the contribution of the International GNSS Service (IGS) to the International Terrestrial Reference Frame (ITRF) by evaluating the quality of the incorporated solutions as well as their major role in the ITRF formation. Starting with the ITRF2005, the ITRF is constructed with input data in the form of time series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth Orientation Parameters. Analysis of time series of station positions is a fundamental first step in the ITRF elaboration, allowing to assess not only the stations behavior, but also the frame parameters and in particular the physical ones, namely the origin and the scale. As it will be seen, given the poor number and distribution of SLR and VLBI co-location sites, the IGS GPS network plays a major role by connecting these two techniques together, given their relevance for the definition of the origin and the scale of the ITRF. Time series analysis of the IGS weekly combined and other individual Analysis Center solutions indicates an internal precision (or repeatability) <2 mm in the horizontal component and <5 mm in the vertical component. Analysis of three AC weekly solutions shows generally poor agreement in origin and scale, with some indication of better agreement when the IGS started to use the absolute model of antenna phase center variations after the GPS week 1400 (November 2006).  相似文献   

16.
Modeling path delays in the neutral atmosphere for the analysis of Very Long Baseline Interferometry (VLBI) observations has been improved significantly in recent years by the use of elevation-dependent mapping functions based on data from numerical weather models. In this paper, we present a fast way of extracting both, hydrostatic and wet, linear horizontal gradients for the troposphere from data of the European Centre for Medium-range Weather Forecasts (ECMWF) model, as it is realized at the Vienna University of Technology on a routine basis for all stations of the International GNSS (Global Navigation Satellite Systems) Service (IGS) and International VLBI Service for Geodesy and Astrometry (IVS) stations. This approach only uses information about the refractivity gradients at the site vertical, but no information from the line-of-sight. VLBI analysis of the CONT02 and CONT05 campaigns, as well as all IVS-R1 and IVS-R4 sessions in the first half of 2006, shows that fixing these a priori gradients improves the repeatability for 74% (40 out of 54) of the VLBI baseline lengths compared to fixing zero or constant a priori gradients, and improves the repeatability for the majority of baselines compared to estimating 24-h offsets for the gradients. Only if 6-h offsets are estimated, the baseline length repeatabilities significantly improve, no matter which a priori gradients are used.  相似文献   

17.
Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year\(^{-1}\), and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 \(\upmu \)as year\(^{-1 }\)in \(y_{\mathrm{pol }}\) when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 \(\upmu \)as in the terrestrial pole coordinates.  相似文献   

18.
CONT campaigns are 2-week campaigns of continuous VLBI observations. The IERS working group on combination at the observation level uses these campaigns to study such combinations. In this work, combinations of DORIS, GPS, SLR, and VLBI technique measurements are studied during CONT08. We present different results concerning the use of common zenith tropospheric delay (ZTD) during the combination. We compare the ZTD obtained separately using each individual technique data processing, the combined ZTD, and the ZTD derived from a meteorological model. This resulted in a high level of consistency between each of these ZTD at a sub-centimeter level, a consistency which especially depends on the number of observations per estimated ZTD and the humidity level in the troposphere. We noted that GPS provides the main information about the combined ZTD, the other techniques providing complementary information when a lack of GPS observations occurs.  相似文献   

19.
The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS–SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.  相似文献   

20.
The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1–UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies propagate into the combined EOP solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号