首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate cosmic ray scattering in the direction perpendicular to a mean magnetic field. Unlike in previous articles we employ a general form of the turbulence wave spectrum with arbitrary behavior in the energy range. By employing an improved version of the nonlinear guiding center theory we compute analytically the perpendicular mean free path. As shown, the energy range spectral index, has a strong influence on the perpendicular diffusion coefficient. If this parameter is larger than one we find for some cases a perpendicular diffusion coefficient that is independent of the parallel mean free path and particle energy. Two applications are considered, namely transport of Galactic protons in the solar system and diffusive particle acceleration at highly perpendicular interplanetary shock waves.  相似文献   

2.
Drift instabilities arising when accelerated protons are trapped in the intergalactic medium are examined. If α, the ratio of total (plasma + energetic particles) pressure and magnetic field pressure is larger than some value α?0.1 to 0.3, the magnetic trap is destroyed and protons are released into interstellar medium. If α<α*, the trapped protons exhibit gradient instability due to magnetic drift resonance. This ‘universal’ instability results in rapid development of strong Alfvén wave turbulence with small wavelengths transverse to the magnetic field. Particle diffusion due to the waves has a rather complicated character and appears to be weak as compared to quasilinear diffusion.  相似文献   

3.
The detection of very high energy γ-ray emission from the Galactic center has been reported by four independent groups. One of these γ-ray sources, the 10TeV γ-ray radiation reported by HESS, has been suggested as having a hadronic origin when relativistic protons are injected into and interact with the dense ambient gas. Assuming that such relativistic protons required by the hadronic model come from the tidal disruption of a star by the massive black hole of Sgr A*, we explore the spectrum of the relativistic protons. In the calculations, we investigate cases where different types of stars are tidally disrupted by the black hole of Sgr A*, and we consider that different diffusion mechanisms are used for the propagation of protons. The initial energy distribution of the injected spectrum of protons is assumed to follow a power-law with an exponential cut-off, and we derive the different indices of the injected spectra for the tidal disruption of different types of stars. For the best fit to the spectrum of photons detected by HESS, the spectral index of the injected relativistic protons is about 2.05 when a red giant is tidally disrupted by the black hole of Sgr A* and the diffusion mechanism is the Effective Confinement of Protons.  相似文献   

4.
Low altitude satellite measurements of protons in the 1–100 keV range indicate two energy dependent proton precipitation boundaries. At low invariant latitudes mostly below 60° there is a region of moderately weak proton precipitation. The poleward boundary of this region tends to be at higher latitudes for the high energy protons than for the low energy protons. At high invariant latitudes there is a region where both the low and high energy protons precipitate with an isotropic pitch-angle distribution. The equatorward boundary of this region tends to be at lower latitudes for protons with energy more than 100 keV than for those in the 1–6 keV range. This region with isotropic pitch-angle distribution is located well outside the plasmapause both for the 1–6 and 100-keV protons.Between these two precipitation zones there is a region where the proton pitch-angle distribution is highly anisotropic with almost no protons in the loss cone. This region tends to be wider and more pronounced in the 1–6 than in the 100-keV protons.These findings lend further support to the mechanism of ion-cyclotron instability as the cause of proton pitch-angle diffusion in the low and intermediate regions. The process responsible for the strong diffusion at auroral latitudes has not yet been identified.  相似文献   

5.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

6.
Numerical solutions of the cosmic-ray equation of transport within the solar cavity and including the effects of diffusion, convection, and energy losses due to adiabatic deceleration, have been used to reproduce the modulation of galactic electrons, protons and helium nuclei observed during the period 1965–1970. Kinetic energies between 10 and 104 MeV/nucleon are considered. Computed and observed spectra (where data is available) are given for the years 1965, 1968, 1969 and 1970 together with the diffusion coefficients. These diffusion coefficients are assumed to be of separable form in rigidity and radial dependence, and are consistent with the available magneticfield power spectra. The force-field solutions are given for these diffusion coefficients and galactic spectra and compared with the numerical solutions. For each of the above years we have (i) determined the radial density gradients near Earth; (ii) found the mean energy losses suffered by galactic particles as they diffuse to the vicinity of the Earth's orbit; (iii) shown quantitatively the exclusion of low-energy galactic protons and helium nuclei from near Earth by convective effects; and (iv), for nuclei of a given energy near Earth, obtained their distribution in energy before entering the solar cavity. It is shown that the energy losses and convection lead to near-Earth nuclei spectra at kinetic energies ≤100 MeV/nucleon in which the differential intensity is proportional to the kinetic energy with little dependence on the form of the galactic spectrum. This dependence is in agreement with the observed spectra of all species of atomic nuclei and we argue that this provides strong observational evidence for the presence of energy losses in the propagation process; and for the exclusion of low energy galactic nuclei from near Earth.  相似文献   

7.
Cosmic rays of interest here are electrically charged protons or nuclei having kinetic energy of the order of 1018 eV or more. The theory of cosmic-ray propagation is carried out on the assumption that the original particle may be of extragalactic origin. The curvature and gradient drift is incorporated in the anti-symmetric term of the diffusion tensor. The theory of force-field is examined including diffusion, convection, and energy losses of the cosmic rays. Finally some observation aspects are included in the concluding remarks.  相似文献   

8.
We present Cassini data revealing that protons between a few keV and about 100 keV energy are not stably trapped in Saturn's inner magnetosphere. Instead these ions are present only for relatively short times following injections. Injected protons are lost principally because the neutral gas cloud converts these particles to energetic neutral atoms via charge exchange. At higher energies, in the MeV to GeV range, protons are stably trapped between the orbits of the principal moons because the proton cross-section for charge exchange is very small at such energies. These protons likely result from cosmic ray albedo neutron decay (CRAND) and are lost principally to interactions with satellite surfaces and ring particles during magnetospheric radial diffusion. A main result of this work is to show that the dominant energetic proton loss and source processes are a function of proton energy. Surface sputtering by keV ions is revisited based on the reduced ion intensities observed. Relatively speaking, MeV ion and electron weathering is most important closer to Saturn, e.g. at Janus and Mimas, whereas keV ion weathering is most important farther out, at Dione and Rhea.  相似文献   

9.
Cherki  G.  Mercier  J. P.  Raviart  A.  Treguer  L.  Maccagni  D.  Perotti  F.  Villa  G. 《Solar physics》1974,34(1):223-229
Data on high energy electrons and protons in different energy windows are analyzed and compared for two solar flares which occurred at 37 W solar longitude on the 25th February 1969 and the 29th March 1970. While the data for the first of these flares can be interpreted in the framework of a diffusion model with suitable values of the parallel diffusion coefficient, in order to explain the time behaviour of the different particles after the second event, we are led to suppose that the coronal magnetic fields are such that particles of different rigidity are ejected at different longitudes and that there is no good magnetic connection of the Earth with the flare region.  相似文献   

10.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.  相似文献   

11.
The type-I radio continuum may arise from the combination of two electrostatic waves, both directed nearly normal to the magnetic field. One wave, near the upper-hybrid frequency, is generated by gyroresonance with superthermal electrons and comes into equilibrium with these electrons. The other wave, at the lower-hybrid frequency, is generated by the loss-cone instability of trapped superthermal protons in those wave directions for which the lower-hybrid frequency is an exact multiple of the proton gyrofrequency. The brightness temperature of the continuum indicates both the energy of the superthermal electrons and the existance of at least a small number of superthermal protons.  相似文献   

12.
The electromagnetic ion cyclotron instability is shown to be nonconvective for a wide range of plasma β's and ring current proton anisotropies A. The addition of cold plasma to the ring current enlarges the region of the β-A parameter space for nonconvective instability. Thus, despite the high Alfvén speed outside the plasmasphere, ion cyclotron wave amplitudes could grow to appreciable levels and contribute to the pitch-angle and energy diffusion of ring current protons.  相似文献   

13.
Jiling  Han 《Solar physics》1999,185(2):391-396
In high-speed solar wind, propagating Alfvén waves can be transferred into fast magnetosonic waves. When both the magnetic field strength and Alfvén wave velocity approach zero, fast magnetosonic waves will be transferred into ion-acoustic waves. As the phase velocity of ion-acoustic waves is slightly greater than the thermal velocity of protons, the turbulence energy of ion-acoustic waves can largely be absorbed by protons and can cause the mean temperature of protons to be greater than that of electrons by stochastic turbulence heating of ion-acoustic waves for protons.  相似文献   

14.
A model for the production and loss of energetic electrons in Jupiter's radiation belt is presented. It is postulated that the electrons originate in the solar wind and are diffused in toward the planet by perturbations which violate the particles' third adiabatic invariant. At large distances, magnetic perturbations, electric fields associated with magnotospheric convection, or interchange instabilities driven by thermal plasma gradients may drive the diffusion. Inside about 10 RJ the diffusion is probably driven by electric fields associated with the upper atmosphere dynamo which is driven by neutral winds in the ionosphere. The diurnal component of the dynamo wind fields produces a dawn-dusk asymmetry in the decimetric radiation from the electrons in the belts, and the lack of obvious measured asymmetries in the decimetric radiation measurements provides estimates of upper limits for these Jovian ionospheric neutral winds. The average diurnal winds are less than or comparable to those on earth, but only modest fluctuating winds are required to drive the energetic electron diffusion referred to above.The winds required to diffuse the energetic particles across the orbit of the satellite lo in a time equal to their drift period are also estimated. If Io is non-conducting, modest winds are required, but if Io is conducting, only small winds are needed. It is concluded that both protons and electrons are diffused in from the solar wind to small distances without serious losses occurring due to the particles being swept up by the satellites.Consideration of proton and electron diffusion in energy shows that once the electrons become relativistic, the ratio of proton to electron energy increases. Thus, if protons and electrons have the same energy in the solar wind, when the electrons reach nMeV, the protons will be nMeV if n ? 1 or n2 MeV if n ? 1. If the proton-to-electron energy ratio is initially, e.g., 5, then these figures are 5n and 5n2, respectively.  相似文献   

15.
Fahr  Hans J. 《Solar physics》2002,208(2):335-344
It has been known for years now that pick-up ions (PUIs) are produced by ionization of interstellar neutral atoms in the heliosphere and are then convected outwards with the solar wind flow as a separate suprathermal ion fluid. Only poorly known is the thermal behaviour of these pick-ups while being convected outwards. On the one hand they drive waves since their distribution function is unstable with respect to wave growth, on the other hand they also experience Fermi-2 energizations by nonlinear wave-particle interactions with convected wave turbulences. Here we will show that this complicated network of interwoven processes can quantitatively be balanced when adequate use is made of transport-kinetic results according to which pick-up ions essentially behave isothermally at their convection to large solar distances. We derive the adequate heat source necessary to maintain this pick-up ion isothermy and use the negative of that source to formulate the enthalpy flow conservation for solar wind protons (SWPs). This takes care of a consistent PUI-induced heat source guaranteeing that the net energy balance in the SWP–PUI two-fluid plasma is satisfied. With this PUI-induced heat input to SWPs we not only obtain the well-observed SWP polytropy, but we can also derive an expression for the percentage of intitial pick-up energy fed into the thermal proton energy. By a first-order evaluation of this expression we then can estimate that, dependent on the actual PUI temperature, about 40 to 50% of the initial pick-up energy is globally passed to solar protons within the inner heliosphere.  相似文献   

16.
C. B. Wang  Bin Wang  L. C. Lee 《Solar physics》2014,289(10):3895-3916
A scenario is proposed to explain the preferential heating of minor ions and differential-streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test-particle simulations that minor ions can be nearly fully picked up by intrinsic Alfvén-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high-frequency ion-cyclotron waves and low-frequency Alfvén waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave–particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the low-frequency Alfvén waves. As a result, the ion is picked up by these Alfvén-cyclotron waves. However, minor ions can only be partially picked up in the corona because of the low wave energy density and low plasma β. During the pickup process, minor ions are stochastically heated and accelerated by Alfvén-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfvén waves and ion-cyclotron waves is important in the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in-situ and remote features observed in the solar wind and solar corona.  相似文献   

17.
Chorus waves have been suggested to be effective in acceleration of radiation belt electrons. Here we perform gyro-averaged test-particle simulations to calculate the bounce-averaged pitch angle and energy diffusion coefficients for parallel-propagating monochromatic chorus waves, and perform a comparison of test-particle (TP) model with quasi-linear (QL) theory to evaluate the influence of nonlinear processes. For small amplitude chorus waves, the diffusion coefficients of TP and QL models are in good agreement. As the wave amplitude reaches a threshold value, two nonlinear processes (phase trapping and phase bunching) start to occur, especially at large equatorial pitch angles. Phase trapping yields rapid increases in pitch angle and kinetic energy. In contrast, phase bunching causes overall decreases in pitch angle and kinetic energy. For the waves with amplitudes slightly above the threshold value, the average behavior is dominated by the phase trapping, and TP diffusion coefficients are larger than QL ones. As wave amplitude increases, TP diffusion coefficients become smaller than QL ones, indicating that phase trapping gradually reduces the dominance over phase bunching.  相似文献   

18.
This paper provides a comprehensive analysis of the dynamics of the flow of minor ion species in the solar wind under the combined influences of gravity, Coulomb friction (with protons), rotational forces (arising from the Sun's rotation and the interplanetary spiral magnetic field) and wave forces (induced in the minor ion flow by Alfvén waves propagating in the solar wind). It is assumed that the solar wind can be considered as a proton-electron plasma which is, to a first approximation, unaffected by the presence of minor ions. In the dense hot region near the Sun Coulomb friction accelerates minor ions outwards against the gravitational force, part of which is cancelled by the charge-separation electric field. Once the initial acceleration has been achieved, wave and rotational forces assist Coulomb friction in further increasing the minor ion speed so that it becomes comparable with, or perhaps even exceeds, the solar wind speed. A characteristic feature of the non-resonant wave force is that it tends to bring the minor ion flow into an equilibrium where the radial speed matches the Alfvén speed relative to the solar wind speed, whereas Coulomb friction and rotational forces tend to bring the flow into an equilibrium where the radial speed of the minor ions equals the solar wind speed. Therefore, provided that there is sufficient wave energy and Coulomb friction is weak, the minor ion speed can be trapped between these two speeds. This inteststing result is in qualitative agreement with observational findings to the effect that the differential flow speed between helium ions and protons is controlled by the ratio of the solar wind expansion time to the ion-proton collision time. If the thermal speeds of the protons and minor ions are small compared to the Alfvén speed, two stable equilibrium speeds can exist because the rapid decrease in the Coulomb cross-section with increasing differential flow speed allows the non-resonant wave force to balance Coulomb friction at more than one ion speed. However, it must be emphasized that resonant wave acceleration and/or strong ion partial pressure gradients are required to achieve radial speeds of minor ions in excess of the proton speed, since, as is shown in Section 4, the non-resonant wave acceleration on protons and minor ions are identical when their radial speeds are the same, with the result that, in the solar wind, non-resonant wave acceleration tends (asymptotically) to equalize minor ion and proton speeds.  相似文献   

19.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

20.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号