首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study,we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994,a relatively wet year,and 2002,a relatively dry year.A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted;we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere.Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction(NCEP-I and-II).A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface(E P) from the divergence of the total moisture transport.Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions.In 1994,Pakistan received more rainfall compared to 2002 during the summer monsoon.Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August.Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal.Moreover,in 1994,a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002.Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon.Finally,from the water budget analysis,it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.  相似文献   

2.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied.The results show that there is apparent seasonal transition of moistrue sink and water vapor transport between Asian monsoon region and Australian monsoon region.In winter,the Asian monsoon region is a moisture source,in which three cross-equatorial water vapor transport channels in the “continent bridge“,at 80°E and 40°E~50° transport water vapor to the Australian monsoon region and southern Indian Ocean which are moistrue sinks.In summer,Australian Monsoon region anmd southern Indian Ocean are moistrue sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink.In spring and autumn,ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

3.
In this study, by using the ECMWF ERA-Interim reanalysis data from 1979 to 2010, the spatial distribution and transport of total atmospheric moisture over the Tibetan Plateau(TP) are analyzed, together with the associated impacts of the South Asian summer monsoon(SASM). Acting as a moisture sink in summer, the TP has a net moisture flux of 2.59× 107kg s 1during 1979–2010, with moisture supplies mainly from the southern boundary along the latitude belts over the Bay of Bengal and the Arabian Sea. The total atmospheric moisture over the TP exhibits significant diferences in both spatial distribution and transport between the monsoon active and break periods and between strong and weak monsoon years. Large positive(negative) moisture anomalies occur over the southwest edge of the TP and the Arabian Sea, mainly due to transport of easterly(westerly) anomalies during the monsoon active(break) period. For the whole TP region, the total moisture supply is more strengthened than the climatological mean during the monsoon active period, which is mainly contributed by the transport of moisture from the south edge of the TP. During the monsoon break period, however, the total moisture supply to the TP is slightly weakened. In addition, the TP moisture sink is also strengthened(weakened) in the strong(weak) monsoon years, mainly attributed by the moisture transport in the west-east directions. Our results suggest that the SASM has exerted great impacts on the total atmospheric moisture and its transport over the TP through adjusting the moisture spatial distribution.  相似文献   

4.
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Punt (18o32’N, 73o51’E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean ver-tical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Rela-tive Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the larg-est at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.  相似文献   

5.
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18o32’N, 73o51’E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean ver-tical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) when an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Rela-tive Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the larg-est at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.  相似文献   

6.
By using the ECMWF reanalysis daily data and daily precipitation data of 80 stations in Northeast China from 1961 to 2002, the impacts of moisture transport of East Asian summer monsoon on the summer precipitation anomaly in Northeast China, and the relationship between the variation of moisture budget and the establishment of East Asian summer monsoon in this region are studied. The results demonstrate that the moisture of summer precipitation in Northeast China mainly originates from subtropical, South China Sea, and South Asia monsoon areas. East China and its near coastal area are the convergent region of the monsoonal moisture currents and the transfer station for the currents continually moving northward. The monsoonal moisture transport, as an important link or bridge, connects the interaction between middle and low latitude systems. In summer half year, there is a moisture sink in Northeast China where the moisture influx is greater than outflux. The advance transport and accumulation of moisture are of special importance to pentad time scale summer precipitation. The onset, retreat, and intensity change of the monsoonal rainy season over Northeast China are mainly signified by the moisture input condition along the southern border of this area. The establishment of East Asian summer monsoon in this area ranges from about 10 July to 20 August and the onset in the west is earlier than that in the east. The latitude that the monsoon can reach is gradually northward from west to east, reaching 50°N within longitude 120°-135°E. In summer, the difference of air mass transport between summers with high and low rainfall mainly lies in whether more air masses originating from lower latitudes move northward through East China and its coastal areas, consequently transporting large amounts of hot and humid air into Northeast China.  相似文献   

7.
A numerical study on the winter monsoon and cold surge over East Asia   总被引:3,自引:0,他引:3  
By using the improved regional climate model (RegCM_NCC), a numerical study has been undertaken for the East Asia region over a period of 5 years (1998-2002) in an effort to evaluate the model's ability to reproduce the winter monsoon conditions that were observed. The results showed that the model can successfully simulate the basic characteristics of the winter monsoon circulations, including the location and intensity of the cold-surface, high-pressure system, as well as the wind patterns and the intensity of the winter monsoon. The simulated occurrence frequency and regions of the cold surge were consistent with the observations. The simulated rainfall distribution over China was consistent with the observations collected in South China. The features of the simulated moisture transport were also in good agreement with the observations that were derived from the NCEP reanalysis data, indicating that moisture transport coming from the Bay of Bengal trough plays a crucial role in supplying moisture needed for precipitation in South China. In addition, the moisture transport coming from the near-equatorial west-Pacific was also important. These two branches of moisture transport converged in South China, as a prerequisite for occurrence of the precipitation that was observed there. Heat budgets have shown that the development of a heat sink over the East Asian continent was remarkable and its thermal contrast relative to the neighboring seas was the important forcing factor for the winter monsoon activity. The simulation also indicated that the significant differences in circulation patterns and rainfalls during the winters of 1997/98 and 1998/99 were affected by cold and warm ENSO events, respectively. The above analysis demonstrated the model's ability to simulate the East Asian winter monsoon.  相似文献   

8.
The water vapor transport around the Tibetan Plateau(TP) and its effect on the rainfall in the Yangtze River valley(YRV) in summer are investigated by decomposing the moisture transport into rotational and divergent components.Based on the ERA-Interim and PREC/L(Precipitation Reconstruction over Land) data from 1985 to 2014,the vertically integrated features of the two components are examined.The results show that the divergent part dominates the western TP while the rotational part dominates the rest of the TP,implying that moisture may be mostly locally gathered in the western TP but could be advected to/from elsewhere over the rest of the TP.The divergent and rotational moisture fluxes exhibit great temporal variability along the southern periphery of the TP,showing sensitivity of water vapor to the steep topography there.Correlation analysis reveals that it is over the southeastern corner of the TP and to its south that a significant correlation between rotational zonal moisture transport and summer rainfall in the YRV appears,suggesting that the southeastern corner of the TP may serve as a moisture transport bridge between the South Asian(Indian) monsoon and the East Asian monsoon.Further composite analysis indicates that anomalous eastward(westward) zonal water vapor transport from the South Asian monsoon via the southeastern corner of the TP favors more(less) precipitation in the YRV in summer.  相似文献   

9.
10.
This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan‘s desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1) the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the lndian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay‘s moisture supply was cut off and the Arabian Sea became the only source of moisture to both the closely located systems. On 27 July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extensionof the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east,the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two systems in the presence of cross-latitude influence. (6) A number of convective cloud clusters were developed and organized in the mesoscale low. Probably, interactions existed among the multi-scale systems.  相似文献   

11.
The characteristics of moisture transport over the Asian summer monsoon region and its relationship with summer precipitation in China are examined by a variety of statistical methods using the NCEP/NC AR reanalysis data for 1948-2005.The results show that:1) The zonal-mean moisture transport in the Asian monsoon region is unique because of monsoon activities.The Asian summer monsoon region is a dominant moisture sink during summer.Both the Indian and East Asian monsoon areas have their convergence cente...  相似文献   

12.
Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and activity of the summer monsoon there are studied. As is shown in the result, the low-frequency oscillation in the South China Sea is much stronger in the period of summer monsoon than in that of winter monsoon and the summer monsoon there usually begins to set up in a negative phase of the first significant low-frequency oscillation for the early summer. The study also reveals that the circulation for the low-frequency oscillation during the summer monsoon in the Sea is embodied as north-south fluctuations of the ITCZ and east-west shifts of western ridge point of the West Pacific subtropical high, suggesting close correlation between the low-frequency oscillation and the active and break (decay) of the South China Sea monsoon. In the meantime. the work illustrates how the low-frequency oscillation in the South China Sea are superimposed with the seasonal variation of the general circulation. so that the summer inonsoon covers the establishment of the Ist, intensification of the 2nd and 3rd the low-frequency oscillations and decay of the 4th oscillation.  相似文献   

13.
The NCEP/NCAR reanalysis datasets and Climate Prediction Center(CPC) Merged Analysis of Precipitation(CMAP) rain data are used to investigate the large scale seasonal transition of East Asian subtropical monsoon(EASM) and its possible mechanism.The key region of EASM is defined according to the seasonal transition feature of meridional wind.By combining the ’thermal wind’ formula and the ’thermal adaptation’ equation,a new ’thermal-wind-precipitation’ relation is deduced.The area mean wind directions and thermal advections in different seasons are analyzed and it is shown that in summer(winter) monsoon period,the averaged wind direction in the EASM region varies clockwise(anticlockwise) with altitude,and the EASM region is dominated by warm(cold) advection.The seasonal transition of the wind direction at different levels and the corresponding meridional circulation consistently indicates that the subtropical summer monsoon is established between the end of March and the beginning of April.Finally,a conceptual schematic explanation for the mechanism of seasonal transition of EASM is proposed.  相似文献   

14.
The climatological characteristics and interdecadal variability of the water vapor transport and budget over the Yellow River-Huaihe River valleys (YH1) and the Yangtze River-Huaihe River valleys (YH2) of East China were investigated in this study,using the NCEP/NCAR monthly mean reanalysis datasets from 1979 to 2009.Changes in the water vapor transport pattern occurred during the late 1990s over YH1 (YH2) that corresponded with the recent interdecadal changes in the eastern China summer precipitation pattern.The net moisture influx in the YH1 increased and the net moisture influx in the YH2 decreased during 2000-2009 in comparison to 1979-1999.Detailed features in the moisture flux and transport changes across the four boundaries were explored.The altered water vapor transport over the two domains can be principally attributed to the additive effects of the changes in the confluent southwesterly moisture flow by the Indian summer monsoon and East Asian summer monsoon (related with the eastward recession of the western Pacific subtropical high).The altered water vapor transport over YH1 was also partly caused by the weakened midlatitude westerlies.  相似文献   

15.
A review of recent advances in research on Asian monsoon in China   总被引:6,自引:0,他引:6  
This paper reviews briefly advances in recent research on monsoon by Chinese scholars, including primarily: (1) the establishment of various monsoon indices. In particular, the standardized dynamic seasonal variability index of the monsoon can delimit the geographical distribution of global monsoon systems and determine quantitatively the date of abrupt change in circulation. (2) The provision of three driving forces for the generation of monsoon. (3) The revelation of the heating-pump action of the Tibetan Plateau, which strengthens southerlies in the southern and southeastern periphery of the Plateau and results in a strong rainfall center from the northern Bay of Bengal (BOB) to the Plateau itself. (4) Clarification of the initial onset of the Asian Summer Monsoon (ASM) in the BOB east of 90°E, Indochina Peninsula (ICP) and the South China Sea, of which the rapid northward progression of tropical convection in the Sumatra and the rapid westward movement of the South Asia High to the Indochina Peninsula are the earliest signs. (5) The provision of an integrated mechanism for the onset of the East Asian Summer Monsoon (EASM), which emphasizes the integrated impact of sensible heat over Indian Peninsula, the warm advection of the Tibetan Plateau and the sensible heat and latent heat over the Indochina Peninsula on the one hand, and the seasonal phase-lock effect of the northward propagation of low frequency oscillation on the other. (6) The revelation of the "planetary-scale moisture transport large-value band" from the Southern Hemisphere through to the Asian monsoon region and into the North Pacific, which is converged by several large-scale moisture transport belts in the Asian-Australian monsoon regions and whose variation influences directly the temporal and spatial distribution of summer rainfall in China. (7) Presenting the features of the seasonal advance of the EASM, the propagation of intraseasonal oscillation, and their relationship with rainfall in Ch  相似文献   

16.
The analyses have been made of the summer precipitation data over Indian and North China during1891—1983.The statistic results show that the climatic characteristics of the Indian summer monsoon rainfallare similar to summer rainfall in North China,and a steady and significant positive correlation exists be-tween them.The circulation systems associated with the Indian monsoon and the rainfall in North China in summerhave also been discussed.It is found that there are same predictors in April to be used for the forecast ofNorth China rainfall and Indian monsoon.  相似文献   

17.
Using data of 850 hPa pentadal mean θsp and composite wind fields in East China, characteristics of the mean circulation are examined with summer monsoon (SM) stabilized over the Changjiang middle and lower reaches (CMLR). The onset of steady SW monsoon consistent over the CMLR is marked by a considerable northward jump of the pentadal position of the 340 K θSe isoline. This is considered as a seasonal change-over of South-China SM in its northward movement. Moreover, it is found that, when low-level SM becomes stabilized over the CMLR, an evident northward shift occurs of the high-level jet center along 115@E, indicating a certain relation between the seasonal variation of the East-Asian circulation pattern in early summer and the steadiness of SM in the CMLR.  相似文献   

18.
The mountain-plains solenoid(MPS) and boundary-layer inertial oscillation(BLO) are two typical regional forcings at the diurnal time scale. Their relative role in regulating the diurnal variations of summer rainfall over North China and their change under different monsoon conditions are studied using a 19-yr archive of satellite rainfall and reanalysis data. It is shown that both a strong MPS and BLO can increase nocturnal rainfall in the North China plains but exhibit evident regional differences. The MPS-induced nocturnal rainfall is relatively confined to the plains adjacent to mountains from late night to morning, due to the upward branch of the nighttime MPS. In contrast, the BLO-induced nocturnal rainfall strengthens from early evening and is more extensive in early morning over the open plains further east. The contrasting effect in the evening is related to the convergent(divergent) easterly anomaly in the plains under the BLO(MPS). The BLO also induces the relatively strong enhancement of moisture convergence and high humidity by the southerly anomaly at late night. On strong monsoon days, the nocturnal rainfall amount associated with the MPS and BLO increases considerably in the plains.Both regional forcings become effective in regulating the rainfall diurnal cycle with enhanced moisture convergence under monsoon conditions. Their induced diurnal amplitudes of moisture convergence can be comparable to the daily mean by monsoon flow. The regional forcings thus couple with monsoon flow to strengthen rainfall in the plains, particularly from late night to morning. The results highlight that a combination of regional and large-scale forcings can strongly regulate the warm-season climate.  相似文献   

19.
Recent advances in monsoon studies in China   总被引:8,自引:0,他引:8  
This review provides a synopsis of the major progress that has been made in monsoon studies in China and to further bridge the gap between the Chinese and international meteorological community. It consists of seven major sections. After the introduction, the second section begins with the global monsoon systems and their seasonal variation, based on some new methods proposed in recent years. Besides, some major intraseasonal features of East Asian monsoon, including the onset of South China Sea summer monsoon are discussed. In the third section, we review the interactions between ENSO and the East Asian monsoon, focusing in particular on the results of Chinese meteorologists that indicate the influence of ENSO on the East Asian summer monsoon(EASM) is obviously different from that on the tropical monsoon. Besides the tropical Pacific,other ocean basins, such as the Indian Ocean and the Atlantic Ocean, are also important to the East Asian monsoon, and this topic is discussed in the fourth section. In the fifth section, we address the role of land surface processes in East Asian monsoon. For example, we describe work that has shown more snow cover in spring on the Tibetan Plateau is followed by a weakened EASM and more summer rainfall in the Yangtze River valleys. The sixth section focuses on the influence of atmospheric circulation in the Southern Hemisphere(SH) on EASM, demonstrating how the signal from the SH is likely to provide new clues for the seasonal forecasting of summer rainfall in China. Finally, in the seventh section, we concentrate on the interdecadal variations of EASM. In particular, we look at a significant interdecadal variation that occurred at the end of the 1970 s, and how our understanding of this feature could affect forecasting ability.  相似文献   

20.
The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated that the temperate jet stream is prominent and active at 300 hPa in winter over the region from 45°-60°N and west of 120°E. The temperate jet stream is represented by a ridge area of high wind speed and dense stream lines in the monthly or seasonal mean wind field, but it .corresponds to an area frequented by a large number of jet cores in the daily wind field and exhibits a distinct boundary that separates itself with the subtropical jet. A comparison of the meridional wind component of the temperate jet stream with that of the subtropical jet shows that the northerly wind in the temperate jet stream is stronger than the southerly component of the subtropical jet, which plays an important role in the temperate jet stream formation and seasonal evolution, and thus the intensity change of the meridional wind component can be used to represent the temperate jet stream's seasonal variation. Analysis of the temperature gradient in the upper troposphere indicates that the temperate jet stream is accompanied by a maximum zonal temperature gradient and a large meridional temperature gradient, leading to a unique jet stream structure and particular seasonal evolution features, which are different from the subtropical jet. The zonal temperature gradient related to the land-sea thermal contrast along the East China coastal lines is responsible for the seasonal evolution of the temperate jet. In addition, there exists a coordinated synchronous change between the movement of the temperate jet and that of the subtropical jet. The seasonal evolution of the meridional wind intensity is closely related to the seasonal shift of the atmospheric circulation in East Asia, the onset of the Asian summer monsoon and the start of Meiyu in the Yangtze and Huaihe River Valleys, and it correlates well with summer and wint  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号