首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18o32’N, 73o51’E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean ver-tical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) when an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Rela-tive Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the larg-est at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.  相似文献   

2.
This paper presents a Raman lidar for measuring tropospheric water vapor profiles over Hefei(31.9°N,117.17°E),China.Intercomparisons of water vapor mixing ratio obtained by this Raman lidar and GZZ-59 type radiosonde observations show the good agreements when relative humidity is higher than 20%.Typical vertical profiles and seasonal variations of water vapor mixing ratio distribution are reported.Many observation eases indicate that the high moisture layer corresponds to large aerosol scattering ratios in the lower troposphere.  相似文献   

3.
采用水平分辨率1°×1°的NCEP 再分析资料、1°×1°的NCEP GDAS资料和2.5°×2.5°的NOAA大气环流资料, 结合NOAA HYSPLIT v4.8轨迹模式对0604号热带风暴“Bilis”整个生命史的水汽输送特征进行模拟分析, 并分析了“Bilis”暴雨增幅前和增幅后的水汽输送轨迹及不同来源的水汽贡献。结果表明, “Bilis”整个活动过程中主要有四支水汽输送通道, 分别是源自索马里、孟加拉湾、120°E 越赤道气流和东太平洋的水汽, 其中源自索马里和孟加拉湾的西南水汽输送(偏南水汽通道)占主导地位, 120°E 越赤道气流和东太平洋的水汽是西南水汽随着“Bilis”环流逆时针旋转, 自环流中心东北侧进入雨区(东北水汽通道), 是低压环流与偏南风相互作用的结果。其中, 偏南通道水汽大部分输送到850 hPa以下的低层, 自环流北侧输入的水汽则主要输送到暴雨区上空850 hPa以上。对比暴雨增幅前后各通道的水汽贡献率发现, 孟加拉湾西南气流输送的低纬水汽对此次暴雨增幅的形成、发展起重要作用。  相似文献   

4.
孙宁  周天军  郭准  李普曦 《大气科学》2020,44(6):1155-1166
穿透性对流是导致北半球夏季平流层低层南亚高压内水汽极值形成的重要机制之一,关于副热带东亚季风区穿透性对流是否对平流层低层水汽等物质分布存在影响目前尚不清楚。本文选取2016年的武汉暴雨事件,采用Cloudsat和Aura Microwave Limb Sounder(MLS)卫星数据,分析了东亚季风区的穿透性对流活动对上对流层/下平流层物质分布的影响。利用CloudSat卫星资料云分类产品和Aura MLS卫星数据联合分析武汉暴雨过程中捕捉到1次穿透性对流事件,该事件发生于2016年7月4日05时(协调世界时)的穿透性对流,中心位于海上梅雨带区域。分析表明,这次对流穿透事件对上对流层/下平流层物质分布有显著影响,穿透性对流活动影响到对流层顶以上的物质分布,具体表现是:首先,穿透性对流显著减少了局地对流层顶附近的臭氧含量,较之气候态对流层顶臭氧含量偏少32.53%;其次,穿透性对流能够增加局地对流层顶附近的水汽混合比含量,它通过更多的云冰粒子蒸发来增强局地平流层水汽含量,同时通过更强的垂直水汽输送来直接加湿平流层。此次穿透性对流事件对水汽变化影响较之对臭氧含量变化的影响更为显著,它使得对流层顶水汽混合比增加近乎一倍(98.15%)。因此,副热带东亚季风区的穿透性对流活动对于对流层向平流层的物质输送起着重要的作用。  相似文献   

5.
程龙  刘海文  周天军  朱玉祥 《大气科学》2013,37(6):1326-1336
利用地面观测资料和NCEP/NCAR再分析资料集,使用相关分析、合成分析等方法,在将地面风分为东南季风和西南季风的基础上,分析了近30余年来盛夏东亚季风频率的年代际变化特征。结果表明:盛夏东南季风、西南季风频率和前期春季青藏高原积雪均在21世纪初期发生了显著的年代际变化;东南季风、西南季风频率由较少改变为较多,春季青藏高原积雪则由深变浅。由于青藏高原积雪厚度发生了年代际变浅,说明青藏高原发生了年代际变暖和南亚高压变强,南亚高压的年代际变强,使得其下游对流层低层(18°~28°N,108°~118°E)的反气旋性环流异常增强,有利于东亚西南季风频率的增加;同时,由于高原发生湿反馈作用,使得淮河地区降水发生年代际变多,由Sverdrup涡度平衡关系,降水的异常增多通过潜热释放,使得东亚副热带高压异常加强,而副热带高压异常变强则有利于盛夏东亚东南季风频率发生年代际增加。  相似文献   

6.
采用1983—2002年NCEP/NCAR再分析资料和我国660站降水资料,对我国东部季风湿润区夏季水汽收支变化与大气环流和我国降水异常特征的关系进行研究。结果表明:20世纪80—90年代夏季水汽收支时间序列表现出明显的年代际变化增加趋势,与降水时间序列的相关系数为0.71;水汽收支高值、低值年代不仅能够指示季风湿润区经向风的异常变化,还能够指示东亚夏季风的强弱和降水异常变化。合成的水汽输送年代际异常在东亚—西太平洋区表现为4个异常环流,异常水汽通量辐合区位于长江流域及以南地区。水汽收支高值年代,亚洲大陆高纬度地区低压偏弱,大陆表面温度及西太平洋海温偏高,我国东部沿海盛行异常偏南风,低层气流辐合、高层气流辐散强,垂直上升运动强烈;低值年代则相反。合成的经向水汽收支占总收支的71.3%,合成的异常降水量最大达100 mm以上。  相似文献   

7.
阿利曼  王君  冯锦明  李秀连 《大气科学》2016,40(5):1073-1088
本文利用1979~2014年NCEP-DOE日平均再分析资料和中国区域2375份航空器空中颠簸报告资料,研究中国东部区域高空颠簸的时空分布特征及其与热带中东太平洋海温异常(简称“海温异常”;空间范围:5°S~5°N,120°~170°W)的关系以及产生这种关系的可能原因。结果表明:中国东部地区高空颠簸与东亚副热带西风急流之间存在显著时空相关关系,其原因是高空纬向风引起的垂直风切变是构成高空颠簸时空分布的主导因素。中国东部夏季高空颠簸与海温异常存在正相关关系;冬季呈现南北两个正负相关区:以30°N为界,北部区域存在显著的负相关,南部区存在显著的正相关,在30°N急流轴附近区域无显著相关关系。海温异常影响中国高空颠簸时空分布的可能原因是海温变化引起对流层高层温度出现异常,进而影响温度的经向梯度,导致东亚副热带西风急流强度和位置出现异常(夏季,急流轴南侧出现西风异常;冬季,急流轴北侧出现东风异常,南侧出现西风异常)。高空纬向风的变化导致纬向风的垂直梯度和经向梯度出现异常,最终影响高空颠簸的时空分布特征。对流层高层温度的异常变化可能是由与热带海温异常相关的平流层水汽变化所引起。  相似文献   

8.
Aerosol optical depth and Angstrom coefficients for three sites in Bangkok and suburbs are examined: Silpakorn University at Nakhon Pathom, NP (13.82°N, 100.04°E), the Asian Institute of Technology at Phatum Thani, AIT (14.08°N, 100.62°E) and the Thai Meteorological Department at Bangkok, BK (13.73°N, 100.57°E). Sunphotometers have been used to measure direct normal spectral irradiance at these sites for a period of 2 years (2004–2005). Cloudless conditions were selected and Bouguer’s law was employed to obtain aerosol optical depth. All three sites exhibit strong seasonal variations, with the highest values occurring at the height of the dry season in April, and the lowest occurring during the rainy season in July. April turbidity conditions are very high, as evidenced by maximum 500 nm optical depths of between 1.4 to 2.0 that were measured at all three locations. The Angstrom exponent α also showed a marked seasonal change, with highest values at the height of the dry season.  相似文献   

9.
施逸  江志红  李肇新 《大气科学》2022,46(2):380-392
利用基于拉格朗日轨迹追踪模式(HYSPLIT),结合区域源汇归属法,追踪1961~2010年中国东部地区雨带推进过程中各雨季后向轨迹,定量确定各雨季不同垂直层上的水汽输送路径与水汽贡献.结果表明在南海夏季风爆发前的华南前汛期,低层最主要水汽通道为太平洋通道,轨迹占比达到52.3%,中高层最主要的水汽通道为印度洋通道,占...  相似文献   

10.
Inter-annual and regional variations in aerosol and cloud characteristics, water vapor and rainfall over six homogeneous rainfall zones in India during the core monsoon month of July from 2000 to 2010, and their correlations are analyzed. Aerosol optical depth (AOD) and aerosol absorbing index (AAI) in July 2002, a drought year are higher over India when compared to normal monsoon years. The drier conditions that existed due to deficient rainfall in July 2002 could be responsible for raising more dust and smoke resulting in higher AODs over India. In addition, over India precipitation is not uniform and large-scale interruptions occur during the monsoon season. During these interruptions aerosols can build up over a region and contribute to an increase in AODs. This finding is supported by the occurrence of higher anomalies in AOD, AAI and rainfall over India in July 2002. Aerosol characteristics and rainfall exhibit large regional variations. Cloud effective radius (CER), cloud optical thickness and columnar water vapor over India are the lowest in July 2002. CER decreases as AOD and AAI increase, providing an observational evidence for the indirect effect of aerosols. Eighty percent of CER in northwest India, and 30% of CER over All India in July 2002 are <14 μm, the precipitation threshold critical cloud effective radius. Northeast India shows contrasting features of correlation among aerosols, clouds and rainfall when compared to other regions. These results will be important while examining the inter-annual variation in aerosols, cloud characteristics, rainfall and their trends.  相似文献   

11.
Synoptic Features of the Second Meiyu Period in 1998 over China   总被引:10,自引:0,他引:10  
1. IntroductionThe Meiyu, translated as plum rain, is a majorannual rainfall event over the Yangtze River Basin inChina and southern Japan in June and July. Theheavy rainfall is mainly caused by a quasi-stationaryfront, known as the Meiyu front, extended from east-ern China to southern Japan (Tao, 1958; Matsumotoet al., 1971; Akiyama, 1990; Gao et al, 1990). Studiesof Zhang and Zhang (1990) and Chen et al. (1998)pointed that the Meiyu front is one of the most signif-icant circulation s…  相似文献   

12.
中国不同地区气溶胶消光特性分析   总被引:14,自引:0,他引:14  
利用多波段太阳光度计在中国四个点(北京的密云,广东的新丰,青海的瓦里关,西藏的当雄)观测了450—900 um范围中多波长气溶胶光学厚度和Angstrom指数。本文分析了这些参数从1998年2月到1999年1月这一年中的特点。结果表明,在干旱和半干旱地区,如密云(17.12°E,40.65°N)和瓦里关(100.90°E,36.29°N),春季出现气溶胶光学厚度的最大值,大约是其它季节的2倍。在湿润地区,如新丰(114.2°E,24.5°N),虽然春季气溶胶光学厚度值也是最大,但只是比其它季节稍微大一些 瓦里关春季的Angstrom指数有最小值,约0.15,表明有比较大的粒子、密云和新丰的Angstrom指数也有很大的月际变化。但没有明显的季节倾向。这表明,气溶胶的源比较复杂。  相似文献   

13.
夏季亚洲季风区是对流层向平流层物质输送的主要通道,其对平流层水汽的变化有重要贡献。以往的研究表明亚洲季风区向平流层的水汽传输主要在青藏高原及周边地区。本文利用多年平均的逐日ERAi、MERRA再分析数据和微波临边观测仪(Microwave Limb Sounder,MLS)数据,首先对比分析夏季青藏高原周边上空水汽的分布特征,再利用再分析资料分析了对流层—平流层水汽传输的特征。结果表明:青藏高原周边特定的等熵面和对流层顶结构分布有利于水汽向平流层的绝热输送;在南亚高压的东北侧,从青藏高原到中太平洋地区,340~360 K层次存在最为显著的水汽向平流层的纬向等熵绝热输送通道,7~8月平均输送强度可达约7×103 kg s-1。此外,在伊朗高原及南亚高压的西部,350~360 K层次也存在一支水汽向平流层的经向等熵绝热输送通道,但强度相对较弱(约2.5×103 kg s-1)。在青藏高原南侧370~380 K层次存在强的水汽向平流层的非绝热输送,主要由深对流和大尺度上升运动引起,7~8月平均输送强度约0.4×103 kg s-1。落基山以东到大西洋西部,350~360 K层次存在水汽向平流层的纬向等熵绝热输送通道,但强度也弱得多(约2.5×103 kg s-1)。  相似文献   

14.
中国西部空中水汽分布结构特征   总被引:2,自引:2,他引:2  
利用1958-1997年月平均NCEP比湿资料研究了中国西部空中水汽分布特征。结果表明:水汽的垂直分布结构非常相似,850hPa以上的水汽分布中心位于青藏高原上空,5-10月水汽含量主要集中在500hPa以下,其中7月的空中水汽含量最丰沛。水汽含量随高度减少,从季节变化来分析,夏季最大、秋季次之、冬季最小。40a的水汽年代际变化表明,夏季空中水汽含量呈现线性下降趋势,特别是20世纪90年代以来更明显;冬季比湿呈线性上升趋势,1月和7月比湿的年代际变化趋势呈反位相特征。  相似文献   

15.
The Aura-MLS observations of eight years from 2004 to 2011 have been utilized to understand the hydration and the dehydration mechanism over the northern and the southern hemispheric monsoon (NH and SH) regions. The monsoon regions considered are the Asian Summer Monsoon, East Asian Summer Monsoon, Arizona Monsoon (AM), North African Monsoon, South American Monsoon and the Australian Monsoon. The annual cycle of water vapor as expected shows maxima over the NH during June–August and during December–February over the SH. The time taken by the air parcels over the NH monsoon regions is found to be different compared to that over the SH monsoon regions. The analysis shows the concentration of water vapor in the upper troposphere and the lower stratosphere (UTLS) has not changed over these eight years in both the hemispheres during their respective monsoon seasons. The present analysis show different processes viz., direct overshooting convection, horizontal advection, temperature and cirrus clouds in influencing the distribution of water vapor to the UTLS over these different monsoon regions. Analysis of the UTLS water vapor with temperature and ice water content shows that the AM is hydrating the stratosphere compared to all the other monsoon regions where the water vapor is getting dehydrated. Thus it is envisaged that the present results will have important implications in understanding the exchange processes across the tropopause over the different monsoon regions and its role in stratosphere chemistry.  相似文献   

16.
Summary The western Himalayas receive higher precipitation than the eastern Himalayas during the winter season (December–March). This differential pattern of winter precipitation over the Himalayas can be attributed to topography and to a higher frequency of disturbances over the western Himalayas, which result in variations in the circulation features. These circulation features, in turn, result in variations in the meridional transport of heat, momentum, potential energy, and moisture across the Himalayas due to mean and eddy motion. Significant meridional transport due to mean motion takes place in the upper troposphere at 300 hPa and 200 hPa. Transport east of 100° E dominates the transport over the western Himalayas. The eddy transport of heat, momentum, and potential energy is considerably smaller than that due to mean motion. Eddy transport magnitudes are smaller up to 500 hPa and increase rapidly aloft to 300 hPa and 200 hPa. Eddy transport over the western Himalayas is greater than over the eastern Himalayas.  相似文献   

17.
本文基于1961~2018年华北地区均一化逐日降水资料和ECMWF(欧洲中期天气预报中心)ERA5全球再分析环流资料,采用一种综合考虑降水量和西太平洋副热带高压脊线影响的雨季监测标准,计算了华北雨季起讫日期和降水量,在此基础上讨论了华北雨季季节内进程的水汽输送特征。重点分析了降水量与水汽收支的年代际变化关系,揭示了水汽输送的时空变化规律及其对华北雨季降水的影响。研究结果表明:(1)华北雨季每年的起讫日期不同,从而每年雨季发生时段和季节内进程不同。(2)降水的形成与水汽输送及其辐合密切相关,有四个水汽通道维持华北雨季降水,即印度季风水汽、东亚季风水汽、110°E~120°E之间越赤道气流向北的水汽输送和40°N附近中纬度西风带水汽。(3)华北雨季降水和净水汽收支具有相似的年代际变化特征,分别在1977、1987、1999年发生突变,总体呈现“减—增—减”的阶段性变化趋势,两者位相转变相关性很强。(4)水汽输送的强弱和到达华北时间的早晚均对雨季降水多寡有重要影响。华北多雨年代与少雨年代水汽通量有明显的差异,主要表现在:在多雨年代,西北太平洋为反气旋式环流异常,偏南水汽强盛,并且与中高纬西风带异常偏西水汽汇聚于华北,华北地区水汽辐合偏强;考虑季节内进程,水汽到达华北的时间早、强度大,停留时间长、辐合强,减弱的时间晚;而在少雨年代,我国东北地区、朝鲜半岛及日本海附近为气旋式环流异常,华北地区由南向北的水汽输送偏弱,水汽辐散明显加强;季节内进程表现出与多雨年代相反的特征。(5)考虑华北地区四个边界的水汽收支,南边界和西边界有最大、次大水汽输入,二者的年代际变化是影响雨季降水年代际变化的重要因素。在多雨年代,南边界和西边界水汽净输入很强,但北边界的输出也很强;在少雨年代,南边界和西边界水汽净输入很弱,但北边界转为输入,这是区别于多雨年代的重要特征。  相似文献   

18.
利用日本气象厅提供的历史海温资料、Hadley环流中心逐月海表温度(Sea Surface Temperature,简称SST)资料、美国NCEP/NCAR再分析资料以及江南地区逐旬降水资料,研究江南地区4—6月(江南雨季,亦泛称为华南前汛期)降水与前期暖池热含量异常的关系,并对可能的影响机制进行分析。研究结果表明,前期暖池热含量与江南雨季降水有密切的负相关关系,前期7—8月暖池关键区(130. 5°~150. 5°E,3. 5°~11. 5°N)热含量高(低)可以作为预报江南雨季旱(涝)的一个很好的指标。前期暖池热含量异常对4—6月环流和降水有重要影响。冷水年,菲律宾异常反气旋导致副高西伸加强,显著加强了其西侧暖湿气流向江南地区输送,高层辐散抽吸作用导致江南地区对流上升运动增强,暖水年相反,表明冷(暖)水年江南雨季降水偏多(少)。就影响机制而言,在前期夏季,关键区南侧存在异常强西风,导致在秋末形成了菲律宾异常反气旋,以及关键区附近(东侧)有冷(暖)海表温度异常发展,在当年春季和夏初该反气旋移到菲律宾以北。直到4月,次表层冷水团上传导致冷SST异常维持并加强了该异常反气旋,其西侧西南暖湿气流将水汽从南海和菲律宾海地区源源不断地向江南地区输送。同时,西印度洋暖海温和赤道印度洋东风异常也逐渐发展增强,在热带印度洋形成东西向异常垂直环流,其下沉支始终在西太平洋维持,导致了菲律宾异常反气旋的维持,并进一步引起江南地区的水汽辐合和上升运动。同时,副热带西风急流轴南压引起的高空强辐散,也有利于上升运动和对流活动在江南地区发展。正是上述过程和机制,导致了前期热含量异常偏低(高)时,我国江南雨季降水偏多(少)。  相似文献   

19.
水汽输送与江南南部初夏雨季及降水变化的联系   总被引:6,自引:1,他引:6  
基于1961—2010年美国国家环境预报中心/大气研究中心(NCEP/NCAR)的逐日再分析格点资料,分析了初夏水汽输送的分布和演变过程及其与中国江南南部初夏雨季的关系。结果显示,初夏水汽输送总体上随夏季风前沿自南向北加强,有3次水汽通量突然增大的涌先后从中国南海北传到25°N及其以南、25°—30°N、30°N及其以北地区,水汽涌和相应峰的发生时间分别对应华南前汛期、江南南部初夏雨季、长江流域梅雨的开始和结束时间。江南南部在初夏雨季处在水汽通量高值区的北缘、水汽辐合区内。青藏高原南侧水汽辐散区是影响江南南部初夏雨季的直接水汽源,澳大利亚北部到印度洋和阿拉伯海南部地区的大面积水汽辐散区则是间接水汽源。经向水汽输送演变对雨季起(讫)具有标志性意义,纬向水汽输送也不容忽视。雨季开始(结束)时江南南部地区的南界(北界)中低层水汽流入(流出)显著增大,但北界(南界)水汽通量并未同步发生显著变化;雨季期间的纬向水汽输送明显增强,水汽通量大于经向水汽输送。雨季强、弱具有年代际变化,且与纬向水汽流入的相关比经向水汽流入的相关更显著。影响江南南部初夏雨季的水汽输送路径主要有两条,北支是从孟加拉湾北部经缅甸和云南、贵州的水汽输送,南支是经孟加拉湾、中南半岛、中国南海与西太平洋副热带高压西侧水汽汇合的水汽输送。强雨季年孟加拉湾北部的东北向水汽输送和中国南海的北向水汽输送都增强,弱雨季年则相反。孟加拉湾、中国南海南部和西太平洋暖池区是显著的水汽辐合区,是江南南部初夏雨季的水汽输送通道而不是水汽源,水汽辐合越弱(强)越有利于(不利于)江南南部初夏雨季的降水,其影响机制可能在于通道上的对流活动对江南南部初夏雨季水汽输送具有拦截作用。  相似文献   

20.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989. With the aid of EOF analysis method, temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied. The results show that there is apparent seasonal transition of moisture sink and water vapor transport between Asian monsoon region and Australian monsoon region. In winter, the Asian monsoon region is a moisture source, in which three cross-equatorial water vapor transport channels in the "continent bridge". at 80°E and 40°E ~ 50°E transport water vapor to the Australian monsoon region and southern Indian Ocean which are moisture sinks. In summer, Australian monsoon region and southern Indian Ocean are moisture sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink. In spring and autumn, ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号