首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite–sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10−7 cm/s (water) to 0.3×10−7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.  相似文献   

2.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

3.
Compacted soil–bentonite liners, consisting of a sandy soil mixed with bentonite as backfill, are used extensively as engineered barriers for contaminant containment. This paper studies the valorization of local materials containing calcareous sand, tuff obtained from Laghouat region (in the South Algeria), to associate with bentonite in order to improve their hydraulic characteristics for use as landfill liner material. Firstly, a geotechnical characterization of mixtures chooses from a fixed percentage to 10% bentonite and different percentages of calcareous sand and tuff so that they are complementary to 90% by not 10%. Thereafter, the determination of saturated hydraulic conductivity at falling-head permeability (Kv) and oedometer (Kid, indirect Measure) tests of all compacted mixtures at Optimum Normal Proctor have been carried out using both permeates by tap water and a landfill leachate in order to simulate long-term conditions. The results showed that the saturated hydraulic conductivity of tap water is relatively lower than the one saturated by leachate in the falling-head test, unlike the oedometer test. The B10CS20T70 mixture has satisfied the hydraulic conductivity criterion of bottom barriers (i.e. water permeated: kv20° = 1.97 × 10?9 and kid from 7 × 10?9 to 1.83 × 10?10 < 10?9m/s; leachate permeated: kv20° = 2.91 × 10?9 and kid from 7 × 10?9 at 1.44 × 10?10 < 10?9 m/s). Finally, a comparison between direct measurements of the saturated hydraulic conductivity by triaxial (Kd) test and oedometer test (Kid) in the range of effective stress applied 100–800 kPa led to propose equations of correlations between these two methods. In conclusion, adopted formulation B10CS20T70 perfectly meets the regulatory requirements in force and constitutes an economic product based on available local materials for engineers barriers.  相似文献   

4.
A series of laboratory tests was conducted on a tropical residual soil, which is widespread and readily available over a considerable part of Peninsular Malaysia, to assess whether it could be compacted as hydraulic barriers in waste disposal landfills. Index properties, swelling potential, cation exchange capacity (CEC), compaction characteristics, and hydraulic conductivity of the soil indicate that it is inorganic, very plastic, inactive (activity <0.75), moderately expansive (modified free swell index is about 3.06), and of fair attenuation capacity (for inorganic contaminants). For hydraulic conductivity measurement, the soil was compacted in rigid-wall permeameter moulds at a variety of water contents and compactive efforts and then permeated with de-aired tap water. The results of hydraulic conductivity tests illustrate that hydraulic conductivity lower than 1×10–7 cm/s can be achieved using a broad range of water contents and compactive efforts, including water contents dry of optimum. Its shrinkage and strength properties show that it has minimal potential to shrinkage and has adequate strength to support the overburden pressure imposes by the waste body. These findings suggest that the residual soil can be potentially utilized as compacted soil liner material.  相似文献   

5.
Pollution of the environment due to leakage from waste repositories is a well-known and wide spread problem. Emphasis has therefore been put on design of liners for such repositories, focusing on hydraulic conductivity and its variation with time, liner composition, water content, compaction etc. The paper addresses the hydraulic conductivity of sand/bentonite mixtures, especially the variation of the hydraulic conductivity as a function of bentonite content, compaction and degree of saturation. In order to better understand the variation of the hydraulic conductivity of a sand–bentonite mixture a new parameter k 1 has been proposed. The parameter reflects the amount of bentonite per pore volume and can easily be calculated based on the amount of bentonite and the dry density of the soil mixture. Thereby, the hydraulic conductivity can be predicted as a function of different degres of compaction. This method can be used for engineering purposes to predict the hydraulic conductivity at an early stage of a design to get an idea of the required design and hence, cost.  相似文献   

6.
Microstructure and hydraulic conductivity of a compacted lime-treated soil   总被引:1,自引:0,他引:1  
Under a given compaction energy and procedure, it is known that maximum dry density of a soil is lowered due to lime addition. This modification of maximum dry density could alter the hydraulic conductivity of the soil. The main object of this study was to assess the impact of lime-stabilization on a silt soil microstructure and then on saturated hydraulic conductivity. An investigation at the microscopic level with mercury intrusion porosimetry showed that lime treatment induced the formation of a new small class, with a diameter lower than 3 × 103 Å in the compacted soil. This class is responsible for the difference in dry density between the treated and the untreated sample after compaction. It is shown that this small pores class was not altered by the compaction water content, the compaction procedure or the dry density. As in untreated soils, only the larger pores were modified by the compaction water content and the compaction procedure in the lime treated samples. The hydraulic conductivity appeared to be only related to the largest pores volume of the tested silt, regardless of lime treatment. Therefore, this study demonstrated that even if addition of lime resulted in a dramatic change of the maximum dry density of the tested silty soil, its effect on hydraulic conductivity is limited.  相似文献   

7.
Soil-bentonite (SB) backfill is used extensively in cutoff walls at landfill sites; the walls are used as engineered geotechnical barriers for contaminant control. With increasing bentonite content, the coefficient of consolidation and hydraulic conductivity of the SB decrease. However, when the bentonite content is increased beyond a certain percentage, the hydraulic conductivity of the SB decreases very little. One of the aims of this paper is to introduce the concept of optimal bentonite content (OBC) for SB cutoff walls, in which the hydraulic conductivity (kh) is expected to be lower than 1?×?10?9 m/s. Additionally, the paper introduces a new index consolidation stress ratio, cvσ′, which is used to obtain the OBC. For this study, the initial water contents of the SB backfill material are selected to be 0.8, 1.0, and 1.2 times their corresponding liquid limits. The clayey soils are amended with different bentonite contents, 0, 5, 8, and 10% (by dry weight basis) for the oedometer tests. Then, piezocone penetration test (CPTU) is applied in SB cutoff wall at a landfill site in Jingjiang city, China. The results of the laboratory and field studies show that the introduction of a new index, cvσ′, is very useful for calculating the OBC and for evaluating the coefficient of consolidation and hydraulic conductivity of SB backfill. The advantage of SB backfill with OBC is that it can achieve the design requirement of very low hydraulic conductivity and improve the safety reserves.  相似文献   

8.
天津滨海地区晚新生代地层自然固结与地面沉降研究   总被引:1,自引:0,他引:1  
天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。  相似文献   

9.
For materials of very low hydraulic conductivity used in the landfill liner systems, e.g., natural clay liners, soil-cement liners, etc., diffusion characteristics should be evaluated, as the transport mechanism of contaminant through them is diffusion controlled. Studies on the diffusion characteristics of the hardened liner materials, such as the soil cement, are relatively few compared with those of clayey soils. In this paper, diffusive characteristics of hardened liner materials (HLMs) applied to the liner system of Sudokwon Metropolitan Landfill in Korea, were studied. Laboratory pure diffusion column tests in the pure- and the advection-diffusion status were performed for the chemicals, NaCl, KCl, and CaCl2. To evaluate the diffusion coefficient of a HLMs system, a one-dimensional numerical transport program was developed for use in a multi-layered HLMs system. The range of dispersion coefficients of advection diffusion column tests was a little narrower than that of diffusion coefficients of pure diffusion tests, although the two coefficients were quite close. The effective diffusion coefficients of chloride ions of a HLMs were about a half of those in clayey soil due to the high density by compaction and curing. Diffusion coefficients of chloride ions in this study were correlated closely with hydraulic conductivities of the materials tested and were consistent with work in the literature.  相似文献   

10.
Monitoring of soil properties is a significant process and plays an important role about how it can be used sustainably. This study was performed in a local area in Sawda Mountains KSA to map out some soil properties and assess their variability within the area under different land cover. Soil sampling was carried out in four different sites using the grid sampling technique. Ten samples were collected in each location within a 10 by 10 km area; soil was sampled at 0–30-cm depth. The soil samples were air-dried, crushed, and passed through a 2-mm sieve before analyzing it for pH, EC, CaCO3, organic matter contents, and bulk density. The thematic maps of these characteristics were produced using ArcGIS 10.0 software. Finally, the land degradation was assessed using three factors: soil salinization, compaction, and edibility. The obtained results showed that the high risk of soil compaction, salinization, and erodibility occupied an area 5.6 ha (17.5%), 3.7 ha (11.54%), and 8.1 ha (25.3%), respectively, in the surface soil layer. The land degradation risk in the study area due to salinization was low to high; however, the degree of soil compaction was moderate to very high. The K-factor (soil erodibility) in the area ranged between 0.1 and 0.35 Mg h MJ?1 mm?1, and most of the study area was located in moderate to high erodibility classes.  相似文献   

11.
It has been widely accepted that reinforcement made of polyethylene and polypropylene is susceptible to creep and soil’s hydraulic conductivity varies with its void ratio. However, unfortunately there is no available sensitivity analysis on time-dependent embankment behaviour taking either reinforcement viscosity or time varying hydraulic conductivity of subsoil into consideration. The influence of geosynthetic reinforcement viscosity and decreasing hydraulic conductivity with consolidation on the time-dependent performance of embankments with floating columns is investigated using a fully 3D coupled model. For an embankment at the working height corresponding to a post-consolidation polypropylene geotextile strain of about 5%, it is shown that the assumption of constant hydraulic conductivity and the failure to consider the viscous behaviour of geosynthetic reinforcement can underestimate time-dependent embankment deformations (including differential crest settlement and horizontal toe movement). The effects of factors including the foundation soil, reinforcement stiffness, column stiffness, column spacing, column type (floating and fully penetrating), and construction rate, on the time-dependent behaviour of column supported embankments are explored.  相似文献   

12.
Laboratory tests were carried out on compacted granite residual soil treated with 0 to 15% Palm Oil Fuel Ash (POFA), with a view to evaluate its hydraulic conductivity for its application in landfilling. The Soil–POFA mixtures were compacted using both Standard and Modified Proctors compactive efforts at 2% dry of Optimum Moulding water Content (?2%), at Optimum Moulding water Content (0%), at 2 and 4% on the wet side of Optimum Moulding water Content (+2 and +4%). The samples were permeated with water and the effect of moulding water content; compactive effort and POFA content were examined. The samples that met the minimum threshold of 1 × 10?9 m/s were used in plotting the acceptable zones criterion at various POFA mixtures. The results gave indications of reduction in the hydraulic conductivity values, with increase in compactive efforts, moulding water content and POFA content up to about 10%. This was the most suitable soil–POFA mixture for the hydraulic application.  相似文献   

13.
A one-dimensional mathematical model based on convection–dispersion equation in unsaturated porous media is presented to compute inorganic total solid concentration in the soil column under the Shiraz landfill. In addition, a dynamic mathematical model is formulated to simulate concentrations of ions such as Ca2+ , Mg2+, Fe2+, K+, Na+, Cl, SO4 2− and HCO3 as well as PH and EC in soil profile under the Shiraz landfill. Leachw model was applied to simulate water flow, water content and hydraulic conductivity in soil depth. The model was calibrated and verified by using different sets of data collected from several segments of soil depth in the study area. The numerical solution obtained using finite element method. The simulated values for the parameters were compared with measured values as well as analytical solution. The simulated results are in good agreement with measured values. This model could be applied to field scale problems for the landfill management.  相似文献   

14.
Yang  Heejun  Tawara  Yasuhiro  Shimada  Jun  Kagabu  Makoto  Okumura  Azusa 《Hydrogeology Journal》2021,29(6):2091-2105

The hydraulic conductivity of an unconfined carbonate aquifer at the uplifted atoll of Minami-Daito, Japan, was evaluated by a combination of cross-spectral analysis, analytical solution, and density-dependent groundwater modeling based on observed groundwater levels in 15 wells and at sea level. The island area was divided into 10 subregions based on island morphology and on inland propagation of ocean tides. The hydraulic conductivity was obtained for each subregion using analytical solutions based on phase lags of M2 constituents of ocean tides at each well by assuming two aquifer thicknesses (300 and 1,800 m) and two effective porosities (0.1 and 0.3). The density-dependent groundwater model evaluated the hydraulic conductivity of the subregions by reproducing observed groundwater levels. The hydraulic conductivity in the subregions was estimated as 3.46?×?10?3 to 6.35?×?10?2 m/s for aquifer thickness of 300 m and effective porosity of 0.1, and as 1.73?×?10?3 to 3.17?×?10?2 m/s for aquifer thickness of 1,800 m and the effective porosity of 0.3. It was higher in southern and northern areas, and higher in interior lowland than in the western and eastern areas. Fissures and dolomite distributions on the island control differences of the omnidirectional ocean tidal propagation and cause these differences in hydraulic conductivity. The method used for this study may also be applicable to other small islands that have few or no data for hydraulic conductivity.

  相似文献   

15.
In current geoenvironmental practice, design engineers usually require that soil liners in waste landfills be compacted within a specified range of water content and dry unit weight. This specification is based primarily on the need to achieve a minimum dry unit weight for factors controlling the performance of compacted soil liners most especially the hydraulic conductivity, k. In this study, lateritic soil treated with up to 10% bentonite, prepared at various compaction states (dry of optimum, optimum and wet of optimum moisture content) was compacted with four compactive efforts (i.e., the reduced British Standard Light, British Standard Light, West African Standard, and British Standard Heavy) to simulate the range of compaction energies expected in the field. Prepared soil mixtures were permeated with water and specimens that yielded the permissible limit of k????1?×?10?9?m/s were enclosed in an envelope (known as the acceptable zone) on the water content?Cdry unit weight curve. It was observed that compaction conditions resulting in moisture content slightly wet of optimum led to the lowest values of k and that the shapes and boundaries of the acceptable zones gradually increased in extent, shifting to wet side of optimum moisture content as the bentonite content increased to 10%. This approach provides good control over the quality of compacted soils and has great potential for field application.  相似文献   

16.
通过电阻率原位测试和室内土工试验,研究黏性土电阻率特性及电阻率与岩土参数的相互关系。在武汉市轨道交通7号线勘察过程中,沿轨道走向,在长江一级阶地共布置完成电阻率测井22组,并于测井位置采取原状土样进行常规土工试验、无侧限抗压试验、直剪快剪试验及三轴UU试验。通过研究发现:黏性土电阻率随含水量及孔隙比的增加而增加,随无侧限抗压强度增加而减小。根据黏性土三轴UU试验结果,其电阻率随黏聚力、内摩擦角的增加而减小。通过拟合,给出了黏性土电阻率与岩土参数间的经验公式,其相关性显著。  相似文献   

17.
Landfills are one of the major sources of methane (CH4) emission which is a very potent greenhouse gas. The use of a natural process for microbial CH4 oxidation through biocovers provides a source reduction of CH4 emission. Previous studies have mostly focused on biochemical properties, and limited research has been conducted with regards to the geotechnical characterization of compost based biocovers. This paper presents the results of a comprehensive laboratory investigation on pure compost and compost–sand mixtures (with mix ratio of 3:1, 1:1, and 1:3 w/w) to determine the compaction, shear strength, compressibility, and hydraulic and thermal conductivity properties of compost based biocovers. Direct shear and ring shear tests have shown that the cohesion (c) and friction angle (?) are in the range of 2.1–19.7 kPa and 44.1°–54.7°, respectively. Based on the results of one dimensional consolidation tests, the coefficient of consolidation (Cv) values are in the range of 1.71–0.63 m2/year, which is a function of the moisture and organic contents of the samples. The lowest hydraulic conductivity ranges from 6.09 × 10?8 to 1.78 × 10?7 cm/s which occur at optimum moisture contents. Thermal conductivity is measured under various porosities and moisture contents. By increasing the dry density and sand content of the mixtures, thermal conductivity increases. The results presented in this paper will contribute to a better understanding of the geotechnical behaviour of compost based biocover, and thus to a more cost-effective design of biocovers.  相似文献   

18.
This study investigates the effect of a heat‐treatment upon the thermo‐mechanical behaviour of a model cement‐based material, i.e. a normalized mortar, with a (w/c) ratio of 0.5. First, a whole set of varied experimental results is provided, in order to either identify or validate a thermo‐mechanical constitutive model, presented in the second paper part. Experimental responses of both hydraulic and mechanical behaviour are given after different heating/cooling cycling levels (105, 200, 300, 400°C). The reference state, used for comparison purposes, is taken after mass stabilization at 60°C. Typical uniaxial compression tests are provided, and original triaxial deviatoric compressive test responses are also given. Hydraulic behaviour is identified simultaneously to triaxial deviatoric compressive loading through gas permeability Kgas assessment. Kgas is well correlated with volumetric strain evolution: gas permeability increases hugely when εv testifies of a dilatant material behaviour, instead of contractile from the test start. Finally, the thermo‐mechanical model, based on a thermodynamics approach, is identified using the experimental results on uniaxial and triaxial deviatoric compression. It is also positively validated at residual state for triaxial deviatoric compression, but also by using a different stress path in lateral extension, which is at the origin of noticeable plasticity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
针对安哥拉具浸水软化和湿陷的Quelo砂,采取不同夯击能(1 000、2 000 kN·m)和不同工况(天然、最优含水率)4种组合方案进行强夯加固对比试验,分析了强夯前、后各试验场地Quelo砂干密度、孔隙比、重型动力触探击数以及湿陷系数等指标的变化规律,提出了Quelo砂地基土在不同工况下的强夯影响深度、有效加固深度建议值和修正系数a。试验结果表明,在增湿的条件下较低能级强夯时Quelo砂的物理力学指标虽然能够显著提高,但湿陷性消除不明显,夯击能足够高时湿陷性才能够进一步被消除,增湿条件下消除Quelo砂湿陷性的强夯施工存在一个夯击能阀值。  相似文献   

20.
In compacted coarse-grained materials, the stress state is largely influenced by the compaction procedure and by the characteristics of the single grains (mineralogy, shape). In this work, two compacted sandy gravels with the same grading but different grain properties have been tested in a large soft oedometer to highlight this influence. In the first part of the paper, the effect of oedometric ring deformability on the stress state is quantified in the framework of elastoplasticity. It is then shown that, for the adopted apparatus and for the tests carried out, the error in the measurement of the coefficient of earth pressure at rest K 0 caused by ring deformability is very small. The two tested materials, compacted by wet tamping, behave differently because of their different grain properties, showing, respectively, small and large grain breakage. In primary loading, the more crushable material has values of K 0 that compare well with Jaky’s (J Soc Hungarian Archit Eng 355–358, 1944) equation at any stress level and for every tested soil density. For the material with stronger grains, only very loose specimens that have undergone little or no compaction have a similar behaviour, while the denser specimens show the typical behaviour of overconsolidated soils, with values of K 0 initially larger than that suggested by Jaky (J Soc Hungarian Archit Eng 355–358, 1944) for normally consolidated soils, tending to it only at the largest applied stress values. By considering the complex combined effect of tamping and grain crushing on the stress state and on the overconsolidation ratio of the soil at the end of compaction, these experimental evidences have been qualitatively explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号