首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In Amazon-shelf waters, as salinity increases to 36.5 × 10−3, dissolved uranium activities increase to a maximum of 4.60 dpm 1−1. This value is much higher than the open-ocean value (2.50 dpm 1−1), indicating a source of dissolved uranium to shelf waters in addition to that supplied from open-ocean and riverine waters. Uranium activities are much lower for surface sediments in the Amazon-shelf seabed (mean: 0.69 ±.09 dpm g−1) than for suspended sediments in the Amazon River (1.82 dpm g−1). Data suggest that the loss of particulate uranium from riverine sediments (and the consequent input of dissolved uranium to shelf waters) is probably the result of uranium desorption from the ferric-oxyhydroxide coatings on sediment particles, and/or uranium release by mobilization of the ferric oxyhydroxides. The total flux (i.e., riverine flux plus desorbed-remobilized particulate flux) of dissolved 238U from the Amazon shelf (about 1.2 × 1015 dpm yr−1) constitutes about 15% of uranium input to the world ocean, commensurate to the Amazon River's contribution to world river-water discharge (approximately 18%). Measurement of only the riverine flux of dissolved 238U underestimates, by a factor of about 5, the flux of dissolved238U from the Amazon shelf to the open ocean.  相似文献   

2.
Sediment core segments from Sylvan Lake, Lake Champlain and Lake Canadarago were dated radiometrically with 210Pb and 137Cs. Their respective sedimentation rates were determined to be 0.11, 0.14 and 0.52 g cm?2 yr?1. For the two lakes of lower sedimentation the variations of selected elemental abundances as function of depth were analyzed. Two groupings were found: Al, K, Ti, Rb and Zr were correlated among themselves but reflected different variations in the input of terrigenous erosion material to the lakes. The Cu, Zn and Pb correlated among themselves showed similar depth dependence with increasing concentrations toward the top which can be attributed to cultural pollution. Recent ‘excess’ fluxes to the sediments above the natural contribution by clastic material were derived for the location of the cores, which for Cu, Zn and Pb amounted to 3.8, 24 and 16 μg cm?2 yr?1 respectively for Sylvan Lake and 4.9, 20 and 16 μg cm?2 yr?1 for Lake Champlain. The corresponding 210Pb flux was 3.3 and 2.3 dpm cm?2 yr?1, respectively for the two lakes.Approximate residence times in the water column were obtained for trace metals at the Lake Champlain location. Short residence times estimated for Pb (< 0.15 yr) and Cu (< 0.4 yr) indicate fast removal, whereas those for Zn (1.0 ± 0.3 yr) and Cr (2.0 ± 0.5 yr) appeared to be dominated by the water residence time.  相似文献   

3.
东非陆缘深水盆地具有巨大油气资源潜力,但对陆坡峡谷沉积特征研究较少,制约有利储集层预测。本研究利用三维地震资料,对东非坦桑尼亚滨海盆地陆坡峡谷开展精细研究。结果表明:(1)研究区陆坡发育多条大型海底峡谷;上陆坡处,坡度较陡,峡谷内以侵蚀作用为主,沉积物主要局限在褶皱推覆带的翼部;褶皱推覆带之外的下陆坡区,坡度变缓,峡谷末端发育席状砂质沉积及砂泥混杂的碎屑流沉积,同时在峡谷北侧发育向北延伸的泥质漂积体;在陆坡边缘,发育海底滑塌,形成块体搬运沉积。(2)峡谷沉积受陆源物质供给、褶皱推覆带、北大西洋底流以及陆坡边界断层等因素控制。受东非裂谷海域分支活动影响,研究区陆架窄、陆坡陡,陆源物质可迅速通过陆架,进入陆坡峡谷:与河流相连的峡谷,物源充足、规模较大,有沉积物发育而没有与河流直接相连的峡谷物源有限、规模较小,峡谷内无明显沉积;褶皱推覆带通过改变海底地形来控制峡谷内沉积分布,褶皱翼部发育沉积,核部则以侵蚀为主;褶皱推覆带外,北大西洋底流与峡谷末端重力流发生交互作用,细粒物质被搬运至峡谷北岸形成漂积体;陆坡边缘断层活跃,峡谷被断层切割,形成断崖,并引发海底滑塌,陆坡处不发育水道及朵体沉积,陆源物质通过峡谷被搬运至更深的深海盆地内。  相似文献   

4.
Vertical and temporal variations in the activities of234Th,210Po and210Pb have been measured, in both dissolved and paniculate phases, at several stations in the eastern Arabian Sea and north-central Bay of Bengal. A comparative study allows us to make inferences about the particle associated scavenging processes in these two seas having distinct biogeochemical properties. A common feature of the234Th profiles, in the Arabian Sea and Bay of Bengal, is that the dissolved as well as total (dissolved + particulate) activity of234Th is deficient in the surface 200 m with respect to its parent,238U. This gross deficiency is attributed to the preferential removal of234Th by adsorption onto settling particles which account for its net loss from the surface waters. The scavenging rates of dissolved234Th are comparable in these two basins. The temporal variations in the234Th-238U disequilibrium are significantly pronounced both in the Arabian Sea and Bay of Bengal indicating that the scavenging rates are more influenced by the increased abundance of particles rather than their chemical make-up. In the mixed layer (0–50 m), the scavenging residence time of234Th ranges from 30 to 100 days. The surface and deep waters of both the seas show an enhanced deficiency of dissolved210Po relative to210Pb and that of210Pb relative to226Ra. The deficiencies of both210Po and210Pb in the dissolved phases are not balanced by their abundance in the particulate form indicating a net loss of both these nuclides from the water column. The scavenging rates of210Po and210Pb are significantly enhanced in the Bay of Bengal compared to those in the Arabian Sea. The mean dissolved210Po/210Pb and210Pb/226Ra activity ratios in deep waters of the Bay of Bengal are ∼ 0.7 and 0.1, respectively, representing some of the most pronounced disequilibria observed to date in the deep sea. The Bay of Bengal and the Arabian Sea appear to be the regions of most intense particle moderated scavenging processes in the world oceans. This is evidenced by the gross disequilibria exhibited by the three isotope pairs used in this study.  相似文献   

5.
Three cores, one kilometer apart, from each of seven locations along Lake Erie were analyzed for heavy metals and dated by 210Pb techniques. The sedimentary record of anthropogenic inputs of heavy metals parallels the increasing intensity of cultural activity in the lake basin. On the average, pollution sources annually contribute 0.4 μg of Cd, 12 μg of Cu, 12 μg of Pb and 36 μg of Zn deposited per each cm2 of the Eastern Basin sediments: 0.5, 8.8, 11 and 31 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of Western Basin sediments and 0.7, 1.4, 2.0 and 5.6 μg of Cd, Cu, Pb and Zn, respectively, deposited per cm2 of fine-grained sediments in the Central Basin. These anthropogenic flux rates exceed the pre-colonial data by 80–600%. The mean flux rates for 210Pb into the Eastern. Central and Western Basins are 0.45, 0.07 and 0.15dpm cm?2 yr?1. respectively. From an inventory of sources and sinks of the metals, it is shown that about 2500 × 103 kg of Cu. 1900 × 103 kg of Pb and 6750 × 103kg of Zn are delivered annually into the lake. The calculated retention in the lake sediments of 45%, 65% and 35% of the total annual inputs of Cu. Pb and Zn, respectively, agrees closely with the accumulation of data derived from sediment analyses. Sewage discharges, direct and indirect, are shown to be an important source of metal in the lake. The mean residence times in the water column are inferred to be 104 days for Cu. 180 days for Pb and 152 days for Zn.  相似文献   

6.
Continental shelf sediments from nine locations off Washington and Oregon have 239,240Pu inventories which average 8.0 ± 2.6 mCi/km2. The Columbia River and seawaters advecting over the shelf supply Pu which is removed to underlying sediments, principally through scavenging by inorganic paniculate matter. Mass balance calculations argue that less than 20 percent of the advected Pu need be scavenged from the water column to balance river input and total shelf sediment inventories. The percentage of the Pu removed through scavenging is consistent with observed participate concentrations in shelf waters and published sediment/water distribution coefficients.No marked separation of Pu from 137Cs is observed with depth in Pacific shelf sediments as has been reported in Atlantic coastal sediments. This interocean distinctness can be explained by differences in particle mixing and downward diffusion of Cs in sediments of varying porosities. The transuranic inventories and Pu/Cs ratios in the Pacific sediments do not support the hypothesis of Livingston and Bowen that Pu is remobilized within the sediment column by ‘complexone’ formation with (principally) organic substances.Excess 210Pb/239,240Pu inventory ratios in eight representative cores from the Washington shelf average 100 ± 19, even though absolute values of both inventories vary by much larger factors. This reasonably constant ratio, for a given water depth, permits estimation of total Pu inventories and prediction of sites of unusual Pu accumulation from data on the more easily measured natural radionuclide.  相似文献   

7.
The mass balances of 210Po and 210Pb were determined for Bickford Pond, Massachusetts. Activities of these nuclides at various depths within the water column, in sediments, in streams flowing into and out of the lake and in precipitation were measured at approximately monthly intervals for a period of one year. Streamwater contained about 10 dpm/100 kg of 210Pb, mostly filtrable and showed little variation with changing flow. 210Pb in the streams is believed to be derived mostly from 222Rn that enters groundwater via alpha-recoil from aquifer matrix materials. It is therefore not meteoric in origin and represents a local source to the lake. Surface inflow was equally important as precipitation as a source of 210Pb to the lake. Only half of total 210Pb input was trapped in sediments; the rest was lost from the lake as outflow. The 210Pb removal times via scavenging and sedimentation both averaged close to 40 days and 210Pb scavenging was almost an order of magnitude greater than that of 210Po.  相似文献   

8.
Vertical profiles of137Cs and210Pb have been determined in a 9 m column of ice from accumulation zone of Changme-Khangpu glacier in north Sikkim valley.137Cs activity varies from 4 to 22 dpm/ L. In many samples210Pb occurs at a level of 20 to 65 dpm/ L which is much higher than the expected fallout value.137Cs and210Pb activities correlate well with each other but not with the dust content. Possibility of210Pb production in the nuclear explosions is discussed. Several peaks appear in the depth profile of137Cs and210Pb which can be matched with Chinese atmospheric nuclear explosions with some phase difference if a uniform ice accumulation rate of 0.7 m per year is assumed since 1969.  相似文献   

9.
Sediment profiles of210Pb and137Cs in cores collected at increasing distances from the heads of Smeaton Bay and Boca de Quadra fjords indicate that watersheds influence the inventories of radioisotopes present and that the steep topographies of the fjords enhance sediment redistribution. Episodic deposition of terrestrially derived sediment was responsible for roughly 50% of the137Cs and 45% of the210Pb inventories in shallower (less than 180 m) locations in Wilson and Bakewell arms of Smeaton Bay.210Pb sedimentation rates at shallower sites when corrected for episodic deposition were less than sedimentation rates obtained in the deep basins of the fjords where sediment focusing and increased primary productivity in the overlying water column occur. Higher fluxes of dissolved Mn from surficial sediments and subsequent reoxidation in the overlying water may have enhanced scavenging of210Pb in basin locations, resulting in higher inventories. Episodic events have occurred frequently in Smeaton Bay and Boca de Quadra suggesting that steady-state conditions with respect to sedimenting particles can be achieved only when averaged over long time periods approaching the time over which137Cs and210Pb are useful.  相似文献   

10.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   

11.
The concentrations and physico-chemical states of 210Pb have been measured in Bikini Atoll and Washington State coastal waters, and 210Po in Washington coastal waters. Lead-210 concentrations of 113–133 dpm · m?3 were found in surface water collections near Bikini Atoll and 29–153 dpm · m?3 in Bikini Lagoon. The concentrations of 210Pb in near Bikini and in Washington State waters increased with depth in the upper 150m at a rate of 0.35–0.45dpm·m?3 · m?1. In the North Equatorial Current waters near Bikini Atoll 210Pb was found associated predominantly with the soluble (colloidal) fraction, but in Washington coastal waters 210Pb and 210Po were found associated with the paniculate (> 0.3 μm) fraction. The mean residence times of 210Pb, calculated from the atmospheric input to marine waters from precipitation and the concentrations measured in surface water, were consistent with the physico-chemical states of 210Pb found in samples collected in deep ocean and coastal waters. Approximate values of the mean residence times were calculated, for the upper 50 m, to be as follows: 58 days in the Strait of Juan de Fuca, 128 days at the 5-mile (8 km) station off Cape Flattery (Washington), 163 days at the 12-mile (19 km) station off Cape Flattery, and 2.6 yr near Bikini Atoll. It appears that 210Pb and 210Po can be used to trace particle removal rates in the upper layers of marine waters.  相似文献   

12.
Sediment accumulation rate studies utilizing excess 210Pb and 137Cs were conducted as part of recent investigations of biogeochemical cycling at a single site in Cape Lookout Bight, a rapidly changing coastal basin on the Outer Banks of North Carolina (U.S.A.). Cores three meters in length reveal a depositional history for the bight interior characterized by a gradual transition in texture from coarse-grained to fine-grained material over the period 1946–1979. This transition is controlled by progressive enclosure of the bight by an active northerly migrating recurved spit. The textural gradation is periodically interrupted by layers of well-sorted sand associated with major storm events. Lead-210 data indicate that the upper meter of the sediment has accumulated at a rate of 3.35 to 4.71 g · cm?2 · yr?1 or approximately 8.4 to 11.8 cm · yr?1 (at ø = 0.84). Below 120 cm depth, dilution of clay and silt by low activity sand necessitates correction of the 210Pb profile in order to establish a geochronology. Grain size 210Pb distribution measurements at three depths reveal that the specific activity (dpm · g?1) of clay is 3.2 times that of silt and 24.7 times that of sand. Corrections of bulk sediment excess 210Pb activities based on these measurements lead to dates for textural changes which are consistent with charted changes in basin morphology and major storm events.Sixteen 137Cs measurements between 33–241 cm depth reveal a peak activity at 105–115 cm and indicate a minimum sedimentation rate of approximately 2.7 g · cm?2 · yr?1.  相似文献   

13.
Sedimentation rates were determined with the 210Pb method in eight sediment cores from Lake Constance. The rate of deposition in the main basin (Obersee) varies from about 0.06 g cm?2 y?1 in the central part to 0.13 g cm?2 y?1 in the eastern part of the lake and then increases rapidly towards the Rhine delta. In the central lake area the rate of deposition has been approximately constant since 1900, and dating with the 210Pb method is in good agreement with sedimentological observations. In the Konstanzer Trichter area, the deposition rate has been increasing since about 1955 as a result of eutrophication and subsequent high carbonate production. Dating with 137Cs is fairly accurate for sediments deposited at a high rate, but is questionable for slowly accumulating ones. A positive correlation of 210Pb fluxes and sedimentation rates indicates that 210Pb flux into sediments follows the distribution pattern of solids. 210Pb profiles in four sediment cores interpreted in terms of a constant flux model display synchronous fluctuations of the sedimentation rate; however, their relation to long-range particulate input variations remains to be proved. Sedimentation rates determined with the 210Pb method were used to calculate recent nutrient and heavy metal fluxes. Anthropogenic fluxes of Zn and Pb are in the same range of magnitude as in other polluted areas in Europe and America.  相似文献   

14.
A mass balance has been calculated for the elements Li, B, and Sr in the Gulf of Papua from sampling undertaken during 1993 to 1999. Parameters measured included Fly, Kikori, and Purari River inputs of dissolved and particulate phases, removal flux to sediment traps at the base of the continental shelf slope, and century-scale accumulation rates in shelf and slope sediments (derived from excess 210Pb profiles in sediment cores). About 91% of river input Li was in particulate form, and there was conservative behavior of dissolved Li in the salinity gradient of the estuaries. Li accumulation rate in inner-shelf sediments was slightly less than river inputs, suggesting that more than 90% of Li river inputs were trapped in rapid aluminosilicate mud accumulation zones of the inner shelf (<50-m depth). Li removal rate to sediment traps at the base of the slope at ∼1000-m water depth was an order of magnitude smaller than the inner-shelf sedimentation. Export of Li to deep water Coral Sea was estimated to be 1.2 × 108 mol yr−1, and this amount is equivalent to the riverine dissolved Li annual supply rate. About 66% of river input of B was in the particulate phase, and low dissolved B concentrations in freshwater were conservatively mixed with higher concentrations of B in seawater across the salinity gradient. Removal of B to inner-shelf sediments was about 83% of the total river input, indicating a small export of B (1.2 × 108 mol yr−1) to the Coral Sea. About half of the dissolved B input from rivers is sorbed to particles and trapped in inner-shelf sediments. Only 24% of river input of Sr was in particulate form, and low freshwater concentrations of dissolved Sr were conservatively mixed with higher concentrations of Sr in seawater across the salinity gradient. Only 20% of total river inputs of Sr were buried in shelf sediments, and there was a large export (7.3 × 108 mol yr−1) of Sr off the shelf to the Coral Sea. A sediment core from a rapidly accumulating mud deposition zone of the inner shelf shows twofold sympathetic variations in Li, B, and Sr/Ca supply rates over 200- to 1000-yr time intervals.  相似文献   

15.
Nine natural decay-series isotopes were measured in six box cores collected from a transect across the Santa Monica Basin. The 210Pb-derived sedimentation rate decreases from ~80 mg/cm2-yr at the slope to ~20 mg/cm2-yr in the deep central basin. Sediment mixing prevails in sites underlying oxic waters, but is subdued in the anoxic deep basin below the sill depth. Uranium contents in sediments are controlled by levels of authigenic U, which are higher in the more reduced condition in the deep basin. Most of the authigenic U results from precipitation within the sediments.The 232Th-228Th disequilibrium in sediments indicates that 228Ra is lost from the sediments from a depth of ~ 10 cm upward. Modelling the distribution of excess 228Th and 234Th in the surficial layers of the deep basin sediments results in a mean sediment mixing coefficient of 0.2 cm2/yr and a sedimentation rate close to that based on 210Pb. There is no evidence of changing sedimentation rate in the central basin during the past century. Fluxes of excess 210Pb, 230Th and 231Pa to the central Santa Monica Basin sediments are much higher than what can be predicted from local supply. Advective input of open ocean waters coupled with enhanced scavenging of these reactive nuclides at the ocean margin is considered to be the primary cause.  相似文献   

16.
A material balance is constructed for excess 210Pb (relative to 226Ra) as a test of the retentivity of Long Island Sound for a reactive heavy metal. Excess 210Pb is supplied to Long Island Sound chiefly by direct atmospheric deposition [1 ± 0.2(dis·min?1)cm?2·yr?1]. Rivers supply less than 20% of the atmospheric flux, and other inputs, from open ocean waters, 226Ra decay, groundwater seepage, and sewage discharge, appear to be negligible. The total input of excess 210Pb represents approximately the flux required to maintain the inventory of excess 210Pb measured in sediment cores from central Long Island Sound; that is, excess 210Pb is lost from Long Island Sound chiefly by radioactive decay. The retention of excess 210Pb within Long Island Sound is achieved in two steps: a rapid removal of soluble 210Pb onto suspended particles and the ongoing entrapment of particles in the basin by the residual bottom-water influx from the east.  相似文献   

17.
Recent (past 100 years) sedimentary processes in the highly dynamic Gulf of Batabano (Cuba, Caribbean Sea) were investigated through the analyses of environmental radionuclides (e.g., 210Pb, 226Ra, 137Cs, 239,240Pu, and 14C) in nine sediment cores. We evaluated the mean mass accumulation rates (MARs) and the surface mixed layers (SMLs) in each sediment core. Based on these results, three sedimentary environments were identified in the study region. In the central zone, the sediments were mainly composed of carbonate transported from the southern area and showed elevated mass accumulation rates (MAR, 0.11–0.23 g cm?2 year?1) and relatively deep surface mixed layers (SML, 14–16 cm). The southwestern zone was characterized by lower MAR (0.05–0.08 g cm?2 year?1) and thinner SML (7–8 cm). In both areas, the long sediment mixing times in the SMLs (of 45–61 years) smoothed out the sedimentary records. The coastline sedimentary environments were characterized by higher MAR (0.30–0.57 g cm?2 year?1) and the sedimentary records displayed clear signatures of extreme climatic events such as the intensive rains in 1999 reported for La Coloma and the hurricanes Lili and Isodore in 2002. Our study shows that the application of the 210Pb sediment dating method in dynamic costal zones is a challenging task but still may provide important information regarding sedimentation and mixing processes in the ecosystem.  相似文献   

18.
Analysis of soil profiles and shallow ground water in the Susquehanna River basin, northeastern U.S.A., indicates that the atmospheric flux of 210Pb is efficiently scavenged by the organic-rich horizons of the soils. This atmospherically supplied 210Pb in soil profiles can only be lost from the system by soil erosion. Based on the annual sediment yield of the Susquehanna River and the excess 210Pb concentration in particulate matter, a mean residence time of 2000 yr is calculated for metals similar to Pb in soil profiles.The West Branch of the Susquehanna River (WBSR) is strongly affected by acid mine drainage and is low in pH and high in dissolved ( <0.4 μm) 210Pb, Fe and Mn. Along its course iron hydroxide is precipitating at a pH of between 4 and 4.5 and the 210Pb supplied by the acid mine water is diminished by about 25% as a result of dilution. As the WBSR enters the Valley and Ridge Province of the Appalachians it has a 210Pb concentration of ~ 0.2 dpm/l. At this juncture it receives a considerable influx of alkalinity from tributaries draining carbonate terranes, resulting in neutralization of the sulfuric acid and increase of the river pH to around 6.5–7. This pH adjustment is accompanied by the precipitation of Fe and Mn. Due to the slow rate of Mn removal from solution, the Mn precipitation extends a considerable distance down river from the point of acid neutralization. Analyses for 210Pb in the river at points in or below the region of Mn precipitation show that 210Pb is rapidly scavenged from solution onto suspended particles. From the data it is possible to calculate the removal rate of Pb from water in the presence of Fe and Mn hydroxides and other particles. At a pH of 4–4.5 Pb removal is nonexistent relative to the river flow rate, but at a pH of 6.5–7 the 210Pb data indicate a residence time of <0.7 day for dissolved Pb.  相似文献   

19.
Detailed sedimentological and stratigraphic analyses were carried out on seven Kullenberg cores collected across the Brazilian continental margin during the French cruises Byblos and Apsara III, in order to highlight the factors controlling the sediment flux distribution in the Southern Brazil Basin during the late Quaternary. On the continental slope and upper continental rise above 3000 m depth, sediment fluxes are important and highly variable (4·2–14·2 g cm?2 10?3 yr). The sediments show a pelagic or turbiditic character, depending on the width of the shelf and proximity of canyons. The material is characterized by high kaolinite contents, and originates from the coastal rivers draining the South American continent north of Rio de Janeiro. On the middle continental rise between 3000 and 4000 m depth, sediment fluxes are the lowest observed in the area (0·9 g cm?2 10?3 yr), because terrigenous input is trapped at shallower depths on the São Paulo Plateau. Pelagic settling is the dominant process. In the deep domains, below 4000 m depth, contouritic accumulations are developed on the path of the northwards moving Antarctic bottom water (AABW) currents. The deposits consist of fine-grained silty-clayey muds with very low carbonate contents. The sediment fluxes (1·45 g cm?2 10?3 yr) are higher than on the middle continental rise, as a consequence of fine-grained terrigenous supply derived from higher latitudes (Argentine Basin and Southern Ocean), and transported in the basin through the Vema Channel by the AABW currents. This material is characterized by high smectite and chlorite contents. These data reveal large sediment flux variations which are linked to distinct depth-related domains. Such a distribution is the consequence of the presence of two available sources of terrigenous sediments: (1) the Brazilian continental areas with a downslope material transport and a sediment distribution controlled by the morphology of the margin, and (2) the Argentine Basin with an alongslope material transport by deep-sea currents which dominate the sedimentation in the abyssal domains.  相似文献   

20.
The monitoring of turbidity currents enables accurate internal structure and timing of these flows to be understood. Without monitoring, triggers of turbidity currents often remain hypothetical and are inferred from sedimentary structures of deposits and their age. In this study, the bottom currents within 20 m of the seabed in one of the Pointe-des-Monts (Gulf of St. Lawrence, eastern Canada) submarine canyons were monitored for two consecutive years using Acoustic Doppler Current Profilers. In addition, multibeam bathymetric surveys were carried out during deployment of the Acoustic Doppler Current Profilers and recovery operations. These new surveys, along with previous multibeam surveys carried out over the last decade, revealed that crescentic bedforms have migrated upslope by about 20 to 40 m since 2007, despite the limited supply of sediment on the shelf or river inflow in the region. During the winter of 2017, two turbidity currents with velocities reaching 0·5 m sec−1 and 2·0 m sec−1, respectively, were recorded and were responsible for the rapid (<1 min) upstream migration of crescentic bedforms measured between the autumn surveys of 2016 and 2017. The 200 kg (in water) mooring was also displaced 10 m down-canyon, up the stoss side of a bedform, suggesting that a dense basal layer could be driving the flow during the first minute of the event. Two other weaker turbidity currents with speeds <0·5 m sec−1 occurred, but did not lead to any significant change on the seabed. These four turbidity currents coincided with strong and sustained wind speed >60 km h−1 and higher than normal wave heights. Repeat seabed mapping suggests that the turbidity currents cannot be attributed to a canyon-wall slope failure. Rather, sustained windstorms triggered turbidity currents either by remobilizing limited volumes of sediment on the shelf or by resuspending sediment in the canyon head. Turbidity currents can thus be triggered when the sediment volume available is limited, likely by eroding and incorporating canyon thalweg sediment in the flow, thereby igniting the flow. This process appears to be particularly important for the generation of turbidity currents capable of eroding the lee side of upslope migrating bedforms in sediment-starved environments and might have wider implications for the activity of submarine canyons worldwide. In addition, this study suggests that a large external trigger (in this case storms) is required to initiate turbidity currents in sediment-starved environments, which contrasts with supply-dominated environments where turbidity currents are sometimes recorded without a clear triggering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号