首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Recent, fresh, volcanic rocks of the intra-oceanic Mariana and Volcano Arcs were analyzed for O and Sr isotopic compositions in order to determine the source of these magmas. Fresh, non-arc, volcanic rocks from the regions surrounding the Mariana-Volcano Arcs and some DSDP sediments were also analyzed for comparison. The oxygen isotopic ratios of the arc lavas (5.5–6.8‰) exhibited a small inter-island variation that cannot be entirely explained by fractional crystallization. The Sr isotopic composition of the arc lavas is remarkably uniform (0.70332–0.70394 for the Marianas). Three models are considered in order to explain the observed isotopic characteristics: (1) bulk mixing and melting of MORB-type mantle with (a) subducted sediments, and (b) subducted oceanic crust (excluding sediments); (2) melting of a mixture of sediment-derived fluids and MORB-type mantle; and (3) melting of a mixture of sediment-derived fluids and oceanic island or “hot-spot” type mantle. The last model fits the data best. The conclusion that very small, and variable, amounts of sediment-derived fluid ( 1%) are required to explain the observed inter-island O isotopic variation, is consistent with that of other workers who used different isotopic and trace element methods. The generation of magmas in the Mariana-Volcano Arcs involves very little sediment and the source region of Mariana lavas is isotopically indistinguishable from that of hot-spot basalts.  相似文献   

2.
Ocean island basalt (OIB) suites display a wide diversity of major element, trace element, and isotopic compositions. The incompatible trace element and isotopic ratios of OIB reflect considerable heterogeneity in the mantle source regions. In addition to the distinctive Sr, Nd and Pb isotopic signatures of the HIMU, EMI and EMII OIB end-members, differences in incompatible trace element ratios among these end-members are of great help in identifying the nature and origin of their sources. Examination of trace element and isotopic constraints for the three OIB end-members suggests a relatively simple model for their origin. The dominant component in all OIB is ancient recycled basaltic oceanic crust which has been processed through a subduction zone, and which carries the trace element and isotopic signature of a dehydration residue (enrichment in HFSE relative to LILE and LREE, low Rb/Sr, but high U/Pb and Th/Pb ratios leading to the development of radiogenic Pb isotope compositions). HIMU OIB are derived from such a source, with little contamination from other components. Both the EMI and EMII OIB end-members are also dominantly derived from this source, but they contain significant proportions (up to 5–10%) of sedimentary components derived from the continental crust. In the case of EMI OIB, ancient pelagic sediment with high LILE/HFSE, LREE/HFSE, Ba/Th and Ba/La ratios, and low U/Pb ratios, is the contaminant. EMII OIB are also contaminated by a sedimentary component, in the form of ancient terrigenous sediment with high LILE/HFSE and LREE/HFSE ratios, but lacking relative Ba enrichment, and with higher U/Pb and Rb/Sr ratios. A model whereby the source for all OIB is ancient (1–2 Ga old) subducted oceanic crust ± entrained sediment (pelagic and/or terrigenous) is therefore consistent with the trace element and isotopic data. Although subducted oceanic lithosphere will accumulate and be dominantly concentrated within the mesosphere boundary layer, forming the source for hot-spots, such material may also become convectively dispersed within the depleted upper mantle as blobs or streaks, giving rise to small-scale chemical heterogeneities in the upper mantle.  相似文献   

3.
Analytical results of the relative and absolute abundance of LIL-incompatible trace elements (K, Rb, Cs, Sr, and Ba) and isotopic compositions ( , , and ) are summarized for fresh samples from active and dormant volcanoes of the Volcano and Mariana island arcs. The presence of thickened oceanic crust (T 15–20 km) beneath the arc indicates that while hybridization processes resulting in the modification of primitive magmas by anatectic mixing at shallow crustal levels cannot be neglected, the extent and effects of these processes on this arc's magmas are minimized. All components of the subducted plate disappear at the trench. This observation is used to reconstruct the composition of the crust in the Wadati-Benioff zone by estimating proportions of various lithologies in the crust of the subducted plate coupled with analyses from DSDP sites. Over 90% of the mass of the subducted crust consists of basaltic Layers II and III. Sediments and seamounts, containing the bulk of the incompatible elements, make up the rest. Bulk Western Pacific seafloor has , δ 18O +7.2, K/Rb 510, K/Ba 46, and K/Cs 13,500. Consideration of trace-element data and combined systematics limits the participation of sediments in magmagenesis to less than 1%, in accord with the earlier results of Pb-isotopic studies. Combined data indicate little, if any, involvement of altered basaltic seafloor in magmagenesis. Perhaps more important than mean isotopic and LIL-element ratios is the restricted range for lavas from along over 1000 km of this arc. Mixtures of mantle with either the subducted crust or derivative fluids should result in strong heterogeneities in the sources of individual volcanoes along the arc. Such heterogeneities would be due to: (1) gross variations of crustal materials supplied to the subduction zone; and (2) lesser efficiency of mixing processes accompanying induced convection between arc segments (parallel to the arc) as compared to that perpendicular to the arc. The absence of these heterogeneities indicates that either some process exists for the efficient mixing of mantle and subducted material parallel to the arc or that subducted materials play a negligible role in the generation of Mariana-Volcano arc melts.Consideration of plausible sources in the mantle indicates that (1) an unmodified MORB-like mantle cannot have generated the observed trace-element and isotopic composition of this arc's magmas, while (2) a mantle similar to that which has produced alkali-olivine basalts (AOB) of north Pacific “hot spot” chains is indistinguishable in many respects spects from the source of these arc lavas.  相似文献   

4.
Radiogenic isotope variations in lavas from the Cook–Austral volcanic chain have delineated three distinct mantle sources: a HIMU component, a depleted component (DM), and an enriched component (EM). To better constrain the mantle sources for South Pacific hot spot volcanism, we determined lithium isotopic compositions of lavas from Raivavae, Rapa, Mangaia and Tubuai of the volcanic chain. The study includes whole rock and mineral analyses. In general, δ7Li of most olivines resemble bulk rock composition whereas clinopyroxenes are variably lighter. This implies that clinopyroxene is more susceptible to diffusion-induced fractionation, in agreement with previous studies. Olivine δ7Li values span a narrower range than whole rock values, and do not extend to the very heavy compositions previously reported in HIMU bulk lavas. This discrepancy likely reflects alteration of bulk lavas, and suggests that Li-isotope analyses of bulk lavas should be interpreted with caution. Olivines from HIMU lavas have heavy δ7Li values (up to 6.2‰), and extend beyond the range reported for fresh MORB. Correlations between Li-isotopes and radiogenic isotopes suggest that the heavy δ7Li values in HIMU olivines are a source characteristic and not the result of post-magmatic alteration. Although the Li-isotope composition of recycled, dehydrated oceanic crust is currently under debate, our results suggest that HIMU lavas derive from a source containing recycled dehydrated oceanic crust, and that the “heavy” Li-isotope signature of altered oceanic crust is partially preserved during passage through the subduction factory.  相似文献   

5.
The Lesser Antilles arc is a particularly interesting island arc because it is presently very active, it is located perpendicular to the South American continent and its chemical and isotopic compositions display a strong north–south gradient. While the presence in the south of a thick pile of sedimentary material coming from the old South American continent has long been suspected to explain the geochemical gradient, previous studies failed to demonstrate unambiguously a direct link between the arc lava compositions and the subducted sediment compositions.Here, we present new Nd, Sm, Th, U and Pb concentrations and Nd–Pb isotopic data for over 60 sediments from three sites located in the fore arc region of the Lesser Antilles arc. New data for DSDP Site 543 drill core located east of Dominica Island complement the data published by White et al. [White, W.M., Dupré, B. and Vidal, P., 1985. Isotope and trace element geochemistry of sediments from the Barbados Ridge–Demerara Plain region, Atlantic Ocean. Geochimica et Cosmochimica Acta, 49: 1875–1886.] and confirm their relatively uniform isotopic compositions (i.e., 206Pb/204Pb between 19.13 and 19.53). In contrast, data obtained on DSDP Site 144 located further south, on the edge of the South American Rise and on sediments from Barbados Island are much more variable (206Pb/204Pb ranges from 18.81 to 27.69). The very radiogenic Pb isotopic compositions are found in a 60 m thick black shale unit, which has no age equivalent in the Site 543 drill core. We interpret the peculiar composition of the southern sediments as being due to two factors, (a) the proximity of the South American craton, which contributes coarse grain old detrital material that does not travel far from the continental shelf, and (b) the presence of older sediments including the thick black shale unit formed during Oceanic Anoxic events 2 and 3.The north–south isotopic change known along the Lesser Antilles arc can be explained by the observed geographical changes in the composition of the subducted sediments. About 1% contamination of the mantle wedge by Site 543 sediments explains the composition of the northern islands while up to 10% sediments like those of Site 144 is required in the source of the southern island lavas. The presence of black shales in the subducted pile provides a satisfactory explanation for the very low Δ8/4 values that characterize the Lesser Antilles arc.  相似文献   

6.
High 4He/3He ratios of 100 000 to 160 000 found at HIMU ocean islands (“high μ,” where μ is the U/Pb ratio) are usually attributed to the presence of recycled oceanic crust in the HIMU mantle source. However, significantly higher 4He/3He ratios are expected in recycled crust after residence in the mantle for periods greater than 1 Ga. In order to better understand the helium isotopic signatures in HIMU basalts, we have measured helium and neon isotopic compositions in a suite of geochemically well-characterized basalts from the Cook–Austral Islands. We observe 4He/3He ratios ranging from 56 000 to 141 000, suggesting the involvement of mantle reservoirs both more and less radiogenic than the mantle source for mid-ocean ridge basalts (MORBs). In addition, we find that the neon isotopic compositions of HIMU lavas extend from the MORB range to compositions less nucleogenic than MORBs. The Cook-Austral HIMU He–Ne isotopic compositions, along with Sr, Nd, Pb, and Os isotopic compositions, indicate that in addition to recycled crust, a relatively undegassed mantle end-member (e.g., FOZO) is involved in the genesis of these basalts. The association of relatively undegassed mantle material with recycled crust provides an explanation for the close geographical association between HIMU lavas and EM (enriched mantle)-type lavas from this island chain: EM-type signatures represent a higher mixing proportion of relatively undegassed mantle material. Mixing between recycled material and relatively undegassed mantle material may be a natural result of entrainment processes and convective stirring in deep mantle.  相似文献   

7.
Mantle convection stirs and homogenizes the subducted oceanic lithosphere with the convecting mantle. Convective mixing stretches and thins the subducted oceanic crust from an original thickness of 6 km to a thickness of 2 cm or less. The thinned, subducted oceanic crust can be observed as pyroxenite bands in high-temperature peridotite massifs. On the scale of centimeters, the bands are destroyed by diffusive processes. In this paper, the homogenization of the subducted oceanic crust with the depleted mantle is modeled by considering the combined problem of thinning and diffusion at a stagnation point. A layer of different composition from the surrounding material is thinned by normal strain until its identity is destroyed by diffusive processes. Thinning dominates the destruction of a layer if a2/D< 1, where is the strain rate, 2a is the initial layer thickness, and D is the diffusivity. Diffusion dominates if a2/D< 1. Our results indicate that the mantle is homogeneous at the centimeter scale. This conclusion is insensitive to variations in the strain rate and the diffusivity, and it is supported by isotopic studies of high-temperature peridotite massifs. Variations in isotope ratios in MORB can be attributed to the imperfect homogenization of the MORB source region.  相似文献   

8.
New lead isotope data for calc-alkaline volcanic rocks from New Zealand and the Lesser Antilles, combined with published data for Japan and the Andes, show that the spread of isotopic composition in each volcanic arc region is small (2–4% range in Pb206/Pb204) compared to the range of values observed (8%). Pb207 and Pb206 increase systematically from Japan to the Andes to New Zealand to the Caribbean. Likewise Pb208 and Pb206 are positively correlated, but there is evidence of long term (108 m.y.) differences of Th/U between the regions studied. The apparent U/Pb ratios of Peruvian, New Zealand and Caribbean calc-alkaline volcanics do not differ greatly from the apparent ratio for the single stage growth curve for stratiform Pb ores. In contrast the apparent U/Pb ratios for Japanese calc-alkaline volcanics are distinctly lower. Although the Japanese Pb has model ages near zero, the other volcanic arcs have negative (future) model ages, the Caribbean samples being most extreme in this respect. Published oceanic volcanic and sediment lead isotopic composition data and the new results are consistent with a model of volcanic arc evolution in which oceanic sediments are dragged into the mantle, mixed to some degree with mantle material, and partially melted to form calc-alkaline magmas. Either constant continental volume or continental growth are compatible with this process. The mixing of two separate « frequently mixed » leads is the minimum complexity required to explain volcanic are leads. Mathematically there are probably no single-stage leads but isotopic homogenization during earth history has caused lead isotopes to closely approximate a single stage growth. The use of lead isotopic composition as a « tracer » suggests that mantle — crust geochemical evolution involves an exchange of material and is not simply a one-way process. The Pb isotopic composition of the Auckland, New Zealand alkali basalts is apparently the result of incomplete mixing of two leads to give a linear array of Pb207/Pb204-Pb206/Pb204 data with negative slope.  相似文献   

9.
The Earth's mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436]. Indeed, the HIMU component (high µ = 238U/204Pb), one of four isotopically distinct end-members in the Earth's mantle, is generally attributed to relatively old (≥ 1–2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to assess the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle end-members) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~ 1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (< 1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.  相似文献   

10.
Basalts from the Marquesas Archipelago display significant variations according to magmatic type in 143Nd/144Nd (0.512710–0.512925) and 87Sr/86Sr (0.70288–0.70561) suggesting heterogeneities at various scales in the mantle source, with respectively the highest and lowest values in tholeiites compared to alkali basalts. This relationship is the reverse from that observed in the Hawaiian islands. Systematic indications of magma mixing are recognized from the relationships between trace element and isotopic ratios. Tholeiites from Ua Pou Island which have unradiogenic Sr (about 0.7028) plot close to basalts from Tubuai and St. Helena, i.e. distinctly below the main mantle trend in the Nd vs. Sr isotopic diagram. It is suggested that the source of these tholeiites is ancient subducted lithosphere which has suffered previous extraction of liquid with island arc tholeiite composition. The trace element and isotopic data of the basalts from the other Marquesas Islands imply the contamination of an equivalent source by an enriched component. This latter has trace element characteristics of the upper crust.  相似文献   

11.
Osmium, strontium, neodymium, and lead isotopic data have been obtained for 30 hand picked samples of basaltic glass from the Pacific, Atlantic and Indian mid-oceanic ridges. Large variations in Os isotopic ratios exist in the glasses, from abyssal peridotite-like values to radiogenic compositions similar to oceanic island basalts (187Os/186Os and 187Os/188Os ratios range from 1.06 to 1.36 and from 0.128 to 0.163, respectively). Os isotopic and elemental data suggest the existence of mixing correlations. This relationship might be ascribed to secondary contamination processes; however, such a hypothesis cannot account for the negative correlation observed between Os and Nd isotopes and the existence of complementary covariations between Os and SrPb isotopes. In this case, OsSrNdPb isotopic variations are unrelated to late post-eruption or shallow level contamination. These relationships provide strong evidence that the Os isotopic composition of the samples are derived from the mantle and thus implies a global chemical heterogeneity of the oceanic upper mantle. The results are consistent with the presence of recycled oceanic crust in the mantle sources of mid-ocean ridge basalts, and indicate that the unique composition of the upper mantle below the Indian ocean results from its contamination by a mantle component characterized by radiogenic Os and particularly unradiogenic Nd and Pb isotopic compositions.  相似文献   

12.
Understanding the origin of ocean island basalts(OIB) has important bearings on Earth's deep mantle.Although it is widely accepted that subducted oceanic crust, as a consequence of plate tectonics, contributes material to OIB's formation, its exact fraction in OIB's mantle source remains ambiguous largely due to uncertainties associated with existing geochemical proxies. Here we show, through theoretical calculation, that unlike many known proxies, triple oxygen isotope compositions(i.e.D^(17 )O) in olivine samples are not affected by crystallization and partial melting. This unique feature, therefore, allows olivine D^(17 )O values to identify subducted oceanic crusts in OIB's mantle source. Furthermore, the fractions of subducted ocean sediments and hydrothermally altered oceanic crust in OIB's mantle source can be quantified using their characteristic D^(17 )O values. Based on published D^(17 )O data, we estimated the fraction of subducted oceanic crust to be as high as 22.3% in certain OIB, but the affected region in the respective mantle plume is likely to be limited.  相似文献   

13.
Orogenic lherzolites allow for almost “in-situ” observation of mantle isotopic heterogeneities on a restricted geographical scale, in contrast to basalts for which melting processes have averaged original mantle compositions over uncertain scales. Pb isotopes from whole rocks and clinopyroxenes from the massifs of Lherz (Pyrenees), Lanzo (Alps), Beni Bousera (Morocco) and Zabargad (Red Sea) show internal heterogeneities that encompass the entire range of variation observed in oceanic basalts. Some depleted lherzolites have a very unradiogenic composition similar to that of the most depleted ridge tholeiites. Pyroxenites from mafic layers generally have more radiogenic compositions, some of them comparable to the most radiogenic oceanic island results. The isotopic differences between lherzolites and pyroxenites vanish where layers are very closely spaced ( < 2 cm). In this case, the lherzolites may have equilibrated with the more Pb-rich pyroxenites through solid-state diffusion under mantle conditions. These results directly illustrate the smallest scales at which Pb isotopic heterogeneity may survive within the mantle.The genesis of these heterogeneities are discussed within the framework of the “marble cake” mantle model [1], where lherzolites are residues left over after oceanic crust extraction, whereas pyroxenites represent either basaltic or cumulate portions of the oceanic crust, reinjected by subduction and stretched by solid-state mixing during mantle convection. The Pb isotope data suggest that each massif was involved in several cycles of convective overturn, segregation and reinjection of the oceanic crust, during periods well over 1 Ga.If the upper mantle is made of interlayered radiogenic and unradiogenic layers, basalt heterogeneities may result from preferential melt-extraction from different layers depending on the degree of melting, as well as from large-scale, plume-related mantle heterogeneities. Orogenic lherzolites therefore allow direct observation of disseminated small-scale heterogeneities previously inferred from observations of oceanic basalts from seamounts and ridges.  相似文献   

14.
High-pressure experiments on a natural pelite have been conducted at 2–11-GPa pressures in order to evaluate contributions of subducted sediments to arc and ocean island magmatism. Obtained phase relations suggest that, at least in modern subduction zones, subsolidus dehydration of chlorite and phengitic muscovite in the subducted sediments, rather than partial melting, is a predominant process in overprinting sediment components onto the magma source region. Trace element compositions of sediment-derived fluids are estimated based on dehydration experiments at 5.5 GPa and 900/1300°C. Pb is effectively transported by fluids relative to other elements. This results in the Pb enrichment for arc basalts by fluids, generated by the dehydration of subducted sediments, together with altered mid-ocean ridge basalt (MORB), and complementary depletion of Pb in subducted sediments. Inferred arc magma compositions obtained by model calculations based on the present experimental results agree well with a natural primitive arc basalt composition. A large increase in the U/Pb ratio in the subducted sediments at deeper levels than major dehydration depths results in a high Pb isotopic ratio through radioactive decay after long periods of isolation. Combined with other isotopic ratios such as Sr and Nd, it is possible to produce the EM II source, one of the enriched geochemical reservoirs for ocean island basalt magmas, by mixing of a small amount of subducted sediments with depleted or primitive mantle.  相似文献   

15.
We have investigated the hypothesis that mantle Pb isotope ratios reflect continued extraction of Pb into the Earth's core over geologic time. The Pb, Sr and Nd isotopic compositions, and the abundance of siderophile and chalcophile elements (W, Mo and Pb) and incompatible lithophile elements have been determined for a suite of ocean island and mid-ocean ridge basalt samples. Over the observed range in Pb isotopic compositions for oceanic rocks, we found no systematic variation of siderophile or chalcophile element abundances relative to abundances of similarly incompatible, but lithophile, elements. The high sensitivity of theMo/Pr ratio to segregation of Fe-metal or S-rich metallic liquid (sulfide) and the observed constantMo/Pr ratio rules out the core formation model as an explanation for the Pb paradox. The mantle and crust have the sameMo/Pr and the sameW/Ba ratios, suggesting that these ratios reflect the ratio in the Earth's primitive mantle.

Our data also indicate that thePb/Ce ratio of the mantle is essentially constant, but the presentPb/Ce ratio in the mantle ( 0.036) is too low to represent the primitive value ( 0.1) derived from Pb isotope systematics. HigherPb/Ce ratios in the crust balance the lowPb/Ce of the mantle, and crust and mantle appear to sum to a reasonable terrestrialPb/Ce ratio. The constancy of thePb/Ce ratio in a wide variety of oceanic magma types from diverse mantle reservoirs indicates this ratio is not fractionated by magmatic processes. This suggests crust formation must have involved non-magmatic as well as magmatic processes. Hydrothermal activity at mid-ocean ridges may result in significant non-magmatic transport of Pb from mantle to crust and of U from crust to mantle, producing a higherU/Pb ratio in the mantle than in the total crust. We suggest that the lower crust is highly depleted in U and has unradiogenic Pb isotope ratios which balance the radiogenic Pb of upper crust and upper mantle. The differences between thePb/Ce ratio in sediments, this ratio in primitive mantle, and the observed ratio in oceanic basalts preclude both sediment recycling and mixing of primitive and depleted reservoirs from being important sources of chemical heterogeneities in the mantle.  相似文献   


16.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This…  相似文献   

17.
Os isotope systematics in ocean island basalts   总被引:5,自引:0,他引:5  
New ReOs isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial 186Os/187Os ratios in OIBs to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart [1], our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial 187Os/186Os ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high 186Os/187Os ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of ReOs systematics in oceanic basalts is uncertain. These effects must be quantified before ReOs systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.  相似文献   

18.
Variations in the isotopic composition of rocks derived from the upper mantle can be used to infer the chemical history and structure of the Earth's interior. The most prominent material in the upper mantle is the source of mid-ocean ridge basalts (MORB). The MORB source is characterized by a general depletion in incompatible elements caused by the extraction of the continental crust from the mantle. At least three other isotopically distinct components are recognized in the suboceanic mantle. All three could be generated by the recycling of near surface materials (oceanic crust, pelagic sediments, continental lithospheric mantle) into the mantle by subduction. Therefore, the isotope data do not require a compositionally layered mantle, but neither do they deny the existence of such layering. Correlations between the volumetric output of plume volcanism with the reversal frequency of the Earth's magnetic field, and between the geographic distribution of isotopic variability in oceanic volcanism with seismic tomography suggest input of deep mantle material to surface volcanism in the form of deep mantle plumes. Volcanism on the continents shows a much wider range in isotopic composition than does oceanic volcanism. The extreme isotopic compositions observed for some continental magmas and mantle xenoliths indicate long-term (up to 3.3 Gyr) preservation of compositionally distinct material in thick (>200 km) sections of continental lithospheric mantle.  相似文献   

19.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

20.
Among long-lived radioactive parent-daughter element pairs, the ratio Lu/Hf is strongly fractionated relative to constant Sm/Nd in the Earth's sedimentary system. This is caused by high resistance to chemical weathering of the mineral zircon (Zr,Hf)SiO4. Zircon-bearing sandy sediments on and near continents have very low Lu/Hf, while deep-sea clays have up to three times the chondritic Lu/Hf ratio. Turbidity currents mechanically carry the low-Lu/Hf sandy material onto the ocean floor. The results are important for the crust-to-mantle recycling discussion, where most recycled materials would be subducted oceanic sediments. Such sediment should be capable of explaining the HfNd mantle isotopic variation by mixing with peridotite, but in fact any average pelagic sediment has Nd/Hf and Lu/Hf too high to allow mixing curves to pass through the Hf/Nd isotopic array. The array could only be reproduced by subduction of turbidite sandstone with pelagic sediment in the approximate ratio 1.2 to 1, and by maintaining a good mixture between the two components. At least today, turbidites are available for subduction only at locations quite different and distant from those where pelagic sediments may be recycled; furthermore, mantle isotopic variation shows that the mantle often cannot mix itself well enough to homogenize these widely-separated sedimentary components to the degree required. The Lu/Hf fractionations place a severe restriction on the ability of recycled sediments to explain mantle isotopic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号