首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《地学前缘(英文版)》2020,11(5):1635-1649
A compilation of 178 more precise ages on 10 potential Large Igneous Provinces(LIPs) across southern Africa,is compared to Earth's supercontinental cycles,where 5 more prominent LIP-events all formed during the assembly of supercontinents,rather than during breakup.This temporal bias is confirmed by a focused review of field relationships,where these syn-assembly LIPs formed behind active continental arcs;whereas,the remaining postassembly-and likely breakup-related-LIPs never share such associations.Exploring the possibility of two radically different LIP-types,only the two younger breakup events(the Karoo LIP and Gannakouriep Suite) produced basalts with more enriched asthenospheric OIB-signatures;whereas,all assembly LIPs produced basalts with stronger lithospheric,as well as more or less primitive asthenospheric,signatures.A counterintuitive observation of Precambrian breakup LIPs outcropping as smaller fragments that are more peripherally located along craton margins,compared to assembly LIPs as well as the Phanerozoic Karoo breakup LIP,is explained by different preservation potentials during subsequent supercontinental cycles.Thus,further accentuating radical differences between(1) breakup LIPs,preferentially intruding along what evolves to become volcanic rifted margins that are more susceptible to deformation within subsequent orogens,and(2) assembly LIPs,typically emplaced along backarc rifts within more protected cratonic interiors.A conditioned duality is proposed,where assembly LIPs are primarily sustained by thermal blanketing(as well as local arc hydration and rifting) below assembling supercontinents and breakup LIPs more typically form above impinging mantle plumes.Such a duality is further related to an overall dynamic Earth model whereby predominantly supercontinent-orientated ocean lithospheric subduction establishes/revitalizes large low shear velocity provinces(LLSVPs) during assembly LIP-activity,and heating of such LLSVPs by the Earth's core subsequently leads to a derivation of mantle plumes during supercontinental breakup.  相似文献   

2.
大火成岩省研新进展   总被引:15,自引:2,他引:13  
大火成岩省的含义是指连续的、体积庞大的火成岩(包括镁铁质和长英质火成岩)所构成的巨型岩浆岩建造。镁铁质大火成岩省可分为:大陆溢流玄武岩、火山被动陆缘、大洋高原玄武岩、大岩墙群和大层状侵入体。镁铁质大火成岩省是地幔柱岩浆活动的直接产物,一般与聚敛板块边界无关。长英质大火成岩省主要由酸性、中酸性熔结凝灰岩及与之有成因联系的花岗岩构成,与岩石圈伸展构造和玄武岩浆底侵作用有不可分割的联系。今后研究方向包括大火成岩省的形成与地幔动力学的联系以及它与大陆增生、大陆裂解和生物绝灭的关系。此外还包括大火成岩省与成矿作用研究  相似文献   

3.
大火成岩省及地幔动力学   总被引:4,自引:1,他引:4       下载免费PDF全文
大火成岩省由一个体积巨大的、连续的、以富镁铁岩石占优势的喷出岩及其伴生的侵入岩组成,是一个全球现象。它包括大陆溢流玄武岩和伴生的侵入岩,火山被动边缘玄武岩,大洋高原、海岭、海山群和洋盆溢流玄武岩。Ontong Java和Kerguelen-Broken Ridge大洋高原、北大西洋火山被动边缘、德干和哥伦比亚河大陆溢流玄武岩是3个主要大火成岩省的典型代表。各种不同的大火成岩省在时空分布及组成上都具有相似性,它们具有非常大的体积、高的喷发速率,岩石类型以拉斑玄武岩为主。大火成岩省代表了地球上已知的最大的火山岩浆活动,记录了物质和能量从地球内部向外的大量转换。大火成岩省难以用板块构造来解释,可用热柱模式来解释,通常被认为是与来自下地幔的热柱“头”有关。大火成岩省是地球动力学过程在地壳的表现,因此大火成岩省参数可作为边界条件去反演地幔动力学过程。  相似文献   

4.
Magmatic systems of large continental igneous provinces   总被引:1,自引:1,他引:0  
Large igneous provinces (LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic) to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical) originated from the core-mantle boundary (CMB). This study mainly focuses on the second (Phanerozoic) type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian–Ludicovian LIP in the Fennoscandian Shield, the Permian–Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical) plumes are made up of moderately depleted spinel peridotites (mainly lherzolites) and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ~20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts) was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can acquire either alkalic or tholeiitic composition depending on the concentration and composition of the fluids. The presence of melt-pockets in the peridotite matrix indicates fluid migration to the rocks of cooled upper margin of the plume head from the lower portion. This process causes secondary melting in this zone and the generation of melts of the black series and differentiated trachytic magmas.  相似文献   

5.
Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.  相似文献   

6.
Continental flood basalts, derived from mantle plumes that rise from the convecting mantle and possibly as deep as the core–mantle boundary, are major hosts for world-class Ni–Cu–PGE ore deposits. Each plume may have a complex history and heterogeneous composition. Therefore, some plumes may be predisposed to be favourable for large-scale Ni–PGE mineralisation (“fertile”).Geochemical data from 10 large igneous provinces (LIPs) have been collected from the literature to search for chemical signatures favourable for Ni–PGE mineralisation. The provinces include Deccan, Kerguelen, Ontong Java, Paraná, Ferrar, Karoo, Emeishan, Siberia, Midcontinent and Bushveld. Among these LIPs, Bushveld, Siberia, Midcontinent, Emei Mt and Karoo are “fertile”, hosting magmatic ore deposits or mineralisation of various type, size and grade. They most commonly intruded through, or on the edges of, Archaean–Paleoproterozoic cratonic blocks. In contrast, the “barren” LIPs have erupted through both continental and oceanic crustal terranes of various ages.Radiogenic isotopic signatures indicate that almost all parental LIP magmas are generated from deep-seated mantle plumes, and not from the more widespread depleted asthenospheric mantle source: this confirms generally accepted plume models. However, several important geochemical signatures of LIPs have been identified in this study that can discriminate between those that are “fertile” or “barren” in terms of their Ni–PGE potential.The fertile LIPs generally contain a relatively high proportion of primitive melts that are high in MgO and Ni, low in Al2O3 and Na2O, and are highly enriched in most of the strongly incompatible elements such as K, P, Ba, Sr, Pb, Th, Nb, and LREE. They have relatively high Os contents (≥ 0.03 to 10 ppb) and low Re/Os (< 10). The fertile LIP basalts display trends of Sr–Nd–Pb isotopic variation intermediate between the depleted plume and an EM1-type mantle composition (and thus could represent a mixing of these two source types), and have elevated Ba/Th, Ba/Nb and K/Ti ratios. These elemental and isotopic signatures suggest that interaction between plume-related magmas and ancient cratonic lithospheric mantle with pre-existing Ni- and PGE-rich sulfide phases may have contributed significantly to the PGE and Ni budget of the fertile flood basalts and eventually to the mineralisation. This observation is consistent with the location of fertile LIPs adjacent to deep old lithospheric roots (as inferred from tectonic environment and also seen in global tomographic images) and has predictive implications for exploration models.Barren LIPs contain fewer high-MgO lavas. The barren LIP lavas in general have low Os contents (mostly ≤ 0.02 ppb) with high Re/Os (10–≥ 200). They show isotopic variations between plume and EM2 geochemical signatures and have high Rb/Ba ratios. These signatures may indicate involvement of deep recycled material in the mantle sources or crustal contamination for barren LIPs, but low degrees of interaction with old lithospheric-type roots.  相似文献   

7.
Large igneous provinces (LIPs) and carbonatites   总被引:4,自引:0,他引:4  
There is increasing evidence that many carbonatites are linked both spatially and temporally with large igneous provinces (LIPs), i.e. high volume, short duration, intraplate-type, magmatic events consisting mainly of flood basalts and their plumbing systems (of dykes, sills and layered intrusions). Examples of LIP-carbonatite associations include: i. the 66 Ma Deccan flood basalt province associated with the Amba Dongar, Sarnu-Dandali (Barmer), and Mundwara carbonatites and associated alkali rocks, ii. the 130 Ma Paraná-Etendeka (e.g. Jacupiranga, Messum); iii. the 250 Ma Siberian LIP that includes a major alkaline province, Maimecha-Kotui with numerous carbonatites, iv. the ca. 370 Ma Kola Alkaline Province coeval with basaltic magmatism widespread in parts of the East European craton, and v. the 615–555 Ma CIMP (Central Iapetus Magmatic Province) of eastern Laurentia and western Baltica. In the Superior craton, Canada, a number of carbonatites are associated with the 1114–1085 Ma Keweenawan LIP and some are coeval with the pan-Superior 1880 Ma mafic-ultramafic magmatism. In addition, the Phalaborwa and Shiel carbonatites are associated with the 2055 Ma Bushveld event of the Kaapvaal craton. The frequency of this LIP-carbonatite association suggests that LIPs and carbonatites might be considered as different evolutionary ‘pathways’ in a single magmatic process/system. The isotopic mantle components FOZO, HIMU, EM1 but not DMM, along with primitive noble gas signatures in some carbonatites, suggest a sub-lithospheric mantle source for carbonatites, consistent with a plume/asthenospheric upwelling origin proposed for many LIPs.  相似文献   

8.
A. R. Ritsema 《Tectonophysics》1970,10(5-6):609-623
This is a report of a symposium organized by the Netherlands Commission for the Upper Mantle Project. The data relative to the generation of the western Mediterranean Sea basins, presented during this symposium, are summarized in the Appendix.

Several modes of origin have been discussed:

1. (1) the basins are remnants of a former larger ocean;

2. (2) they are formed in the wake of drifting continental blocks;

3. (3) by an erosion and denudation of a continental crust;

4. (4) by an upheaval and later subsidence of an ocean floor; or

5. (5) by sub crustal erosion of a continental crust.

It is concluded that, although many data are in agreement with the drift model, this process cannot have been the sole agent in the generation of the basins.  相似文献   


9.
Much has been learned about Large Igneous Provinces (LIPs) and their database greatly expanded since their first formal categorization in the early 1990s. This progress provides an opportunity to review the key characteristics that distinguish LIP events from other melting events of the upper mantle, and to reassess and revise how we define LIPs. A precise definition is important to correctly recognize those LIP events with regional to global effects, and to aid in refining petrogenetic models of the origin of LIPs. We revise the definition of LIPs as follows: “Large Igneous Provinces are magmatic provinces with areal extents > 0.1 Mkm2, igneous volumes > 0.1 Mkm3 and maximum lifespans of ~ 50 Myr that have intraplate tectonic settings or geochemical affinities, and are characterised by igneous pulse(s) of short duration (~ 1–5 Myr), during which a large proportion (> 75%) of the total igneous volume has been emplaced.” They are dominantly mafic, but also can have significant ultramafic and silicic components, and some are dominated by silicic magmatism. In this revision, seamounts, seamount groups, submarine ridges and anomalous seafloor crust are no longer considered as LIPs. Although many of these are spatially-related features post-dating a LIP event, they are constructed by long-lived melting anomalies in the mantle at lower emplacement rates, and contrast with the more transient, high magma emplacement rate characteristics of the LIP event. Many LIPs emplaced in both continental and oceanic realms, are split and rifted apart by new ridge spreading centres, which reinforce the link with mid-ocean ridges as a post-LIP event. Three new types of igneous provinces are now included in the LIP inventory, to accommodate the recognition of a greater diversity of igneous compositions, and preserved expressions of LIP events since the Archean: 1) giant diabase/dolerite continental dyke swarm, sill and mafic–ultramafic intrusion-dominated provinces; 2) Silicic LIPs; and 3) tholeiite–komatiite associations, which may be Archean examples of LIPs. A revised global distribution of LIPs for the Phanerozoic is presented. Establishing the full extent of LIPs requires well-constrained plate reconstructions, and at present, plate reconstructions for the Precambrian are poorly known. However, the possibility of reconstructing the LIP record back to and into the Archean and using this expanded LIP record to better constrain the origins and effects of LIPs is an exciting frontier, and our revised definition is a contribution to that effort.  相似文献   

10.
Throughout its history, the Earth has experienced global magmatic events that correlate with the formation of supercontinents. This suggests that the distribution of continents at the Earth's surface is fundamental in regulating mantle temperature. Nevertheless, most large igneous provinces (LIPs) are explained in terms of the interaction of a hot plume with the lithosphere, even though some do not show evidence for such a mechanism. The aggregation of continents impacts on the temperature and flow of the underlying mantle through thermal insulation and enlargement of the convection wavelength. Both processes tend to increase the temperature below the continental lithosphere, eventually triggering melting events without the involvement of hot plumes. This model, called mantle global warming, has been tested using 3D numerical simulations of mantle convection [Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., Rey, P. (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394.]. Here, we apply this model to several continental flood basalts (CFBs) ranging in age from the Mesozoic to the Archaean. Our numerical simulations show that the mantle global warming model could account for the peculiarities of magmatic provinces that developed during the formation of Pangea and Rodinia, as well as putative Archaean supercontinents such as Kenorland and Zimvaalbara.  相似文献   

11.
Kent C. Condie   《Lithos》2005,79(3-4):491-504
In terms of high field strength element ratios Nb/Th, Zr/Nb, Nb/Y and Zr/Y, most basalts from non-arc type Archean greenstones are similar to oceanic plateau basalts, suggestive of mantle plume sources. A large number of these basalts have ratios similar to primitive mantle composition. Perhaps the Archean mantle was less fractionated than at present and “primitive mantle” comprised much of the deep mantle and made a significant contribution to mantle plumes. The near absence of Archean greenstone basalts similar to NMORB in composition is also consistent with a relatively unfractionated mantle in which a shallow depleted source (DM) was volumetrically insignificant. The element ratios in basalts also indicate the existence of recycled components (HIMU, EM1, EM2) in the mantle by the Late Archean. This suggests that oceanic lithosphere was recycled into the deep mantle and became incorporated in some mantle plumes by the Late Archean. High field strength element ratios also indicate an important contribution of continental crust or/and subcontinental lithosphere to some non-arc Archean greenstone basalts. This implies that at least thin continental lithosphere was relatively widespread in the Archean.  相似文献   

12.
The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430–480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin.

A consistent plate-tectonic model is proposed for the area, consisting of six main stages:

1. (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin;

2. (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc;

3. (3) opening and development of the Trinity back-arc basin around 430–480 Ma ago;

4. (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock;

5. (5) break in volcanic activity from the Early Devonian to the Early Permian; and

6. (6) development of a mature island-arc from the Early Permian to the Late Triassic.

The eastern Klamath Mountains island-arc formations and ophiolitic suite are part of the “Cordilleran suspect terranes”, considered to be Gondwana margin fragments, that have undergone large northward translations before final collision with the North American craton during Late Mesozoic or Cenozoic times. These eastern Klamath Mountains island-arcs could be associated with the paleo-Pacific oceanic plate that led to accretion of these allochthonous terranes to the American margin.  相似文献   


13.
A suite of continental flood basalts sampled over a vast exposure and stratigraphic thickness in the Emeishan large igneous province (LIP), SW China was investigated for laser microprobe 40Ar/39Ar dating. There are two 40Ar/39Ar age groups for these basalts, corresponding to 259-246 Ma and 177-137 Ma, respectively. A well-defined isochron gives an eruption age of huge quantities of mafic magmas at 258.9±3.4 Ma, which is identical to previous dating and paleontological data. Much younger 40Ar/39Ar ages for some basalts with low-greenschist metamorphic facies probably recorded a late thermo-tectonic event caused by collision between the Yangtze and Qiangtang continental blocks during the Mesozoic, which resulted in the reset of argon isotope system. The 40Ar/39Ar age data, we present here, combined with previous dating and paleontological data, suggest relatively short duration (about 3 Ma) of mafic volcanism, which have important implication on mantle plume genesis of the Emeishan continental flood basalts in the LIP.  相似文献   

14.
亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究   总被引:1,自引:0,他引:1  
峨眉山(~260 Ma)、西伯利亚(~250 Ma)和德干(~66 Ma)大陆溢流玄武岩是世界上3个重要的大火成岩省.大火成岩省至少具有4个通常被用于识别古地幔柱的标志:(1)先于岩浆作用的地表隆升;(2)与大陆裂谷化和裂解事件相伴;(3)与生物灭绝事件联系密切;(4)地幔柱源玄武岩的化学特征.虽然这3个大火成岩省都是来源于原始地幔柱,但是它们的地球化学特征有本质上的差异,反映其地幔柱曾与不同的上地幔库相互作用.(1)峨眉山和西伯利亚大陆溢流玄武岩的母岩浆,在上升过程中经受了与地球化学上和古老克拉通岩石圈地幔相同的上地幔库(EM1型幔源)的相互作用;(2)而德干大火成岩省没有受到地壳(或岩石圈)混染的原生玄武岩则显示地幔柱和EM2之间的Sr-Nd同位素变化.这种差异有可能制约了3个大火成岩省的成矿潜力.峨眉山和西伯利亚大火成岩省含有世界级岩浆矿床,而德干大火成岩省则不含矿.  相似文献   

15.
The phanerozoic within-plate magmatism of Siberia is reviewed. The large igneous provinces (LIPs) consecutively arising in the Siberian Craton are outlined: the Altai-Sayan LIP, which operated most actively 400–375 Ma ago, the Vilyui LIP, which was formed from the Middle Devonian to the Early Carboniferous, included; the Barguzin-Vitim LIP (305–275 Ma); the Late Paleozoic Rift System of Central Asia (318–250 Ma); the Siberian flood basalt (trap) province and the West Siberian rift system (250–247 Ma); and the East Mongolian-West Transbaikal LIP (230–195 Ma), as well as a number of Late-Mesozoic and Cenozoic rift zones and autonomous volcanic fields formed over the last 160 Ma. The trace-element and isotopic characteristics of the igneous rocks of the above provinces are reviewed; their mantle origin is substantiated and the prevalence of PREMA, EM2, and EM1 mantle magma sources are shown. The paleogeographic reconstructions based on paleomagnetic data assume that the Iceland hot spot was situated beneath the Siberian flood basalts 250 Ma ago and that the mantle plumes retained a relatively stable position irrespective of the movements of the lithospheric plates. At present, the Iceland hot spot occurs near the northern boundary of the African large low shear velocity province (LLSVP). It is suggested that the within-plate Phanerozoic magmatism of Siberia was related to the drift of the continent above the hot spots of the African LLSVP.  相似文献   

16.
Carbonatites are known to range in age from the Archean through to the Recent, with an increasing abundance towards more recent times. Of the known 500 or so carbonatites, however, few have been precisely dated. In this paper, some new, precise U/Pb, Th/Pb as well as Pb/Pb dates from several carbonatite complexes from Europe and North America are presented and used to establish important reference points in defining mantle perturbations. Events at 2617, 1964, 583 and 382 Ma are now firmly established for the Fennoscandian Shield, while several distinct events of 2680 Ma, and between 1897–1881 and 1164–1083 Ma are documented for the Canadian Shield. Other, less well-defined, events in Canada include magmatism at 1770 Ma from Argor, 570 Ma from Manitou Islands, and an event at 360 Ma from the Canadian Cordillera. One carbonatite from the Ukrainian Shield (Chernigovka) has been precisely dated at 2074 Ma. Events from the Fennoscandian Shield also include carbonatitic magmatism at 1792 Ma from Halpanen, and between 386 and 377 Ma from Kola. Most of these events from quite distinct Archean cratons can be correlated with LIPs and associated mafic magmatism, such as flood basalts and regional dyke swarms, generally considered to be the result of plume magmatism and associated continental fragmentation. Few mafic events are associated with the post-orogenic shoshonitic magmatism at ca. 1800 Ma for the Fennoscandian Shield and the Devonian continental margin extension in the Canadian Cordillera.  相似文献   

17.
Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These basalts yield a fairly wide range of 40Ar/39Ar ages, varying from 259 to 135 Ma. One basalt sample, at least altered, recorded the oldest 40Ar/39Ar age of about 259 Ma, corresponding to a peak eruption age of the Emei LIP continental flood basalts. Most of the samples yield much younger ages from 135 to 177 Ma, which are consistent with the K-Ar ages for the same samples (122.8-172.1 Ma). The dating data suggest that these Permian basalts had been widely affected by the regional tectonothermal event at 177-135 Ma. The event was probably caused by the convergence and collision among the Laurasia, Yangtze and Qiangtang-Qamdo continental blocks on the eastern margin of the Qinghai-Tibet plateau after the late Triassic. The age of the event reflects the timing of the peak collisional orogeny.  相似文献   

18.
On the ages of flood basalt events   总被引:2,自引:0,他引:2  
We review available data constraining the extent, volume, age and duration of all major Phanerozoic continental flood basalts (CFB or traps) and oceanic plateaus (OP), together forming the group of large igneous provinces (LIP), going from the smallest Columbia flood basalts at ~16 Ma to the as yet ill-known remnants of a possible trap at ~360 Ma in eastern Siberia. The 16 traps (CFB and OP) reviewed form a rather unimodal distribution with an initial modal volume of the order of 2.5 Mkm3. Most provinces agree with a rather simple first order model in which volcanism may have lasted of the order of 10 Ma, often resulting in continental break-up, but where most of the volume was erupted in about 1 Ma or sometimes less. This makes CFBs/OPs (LIPs) major geodynamic events, with fluxes exceeding the total output of present day hot spots and even possibly exceeding over short times the entire crustal production of mid-ocean ridges. The proposed correlation between trap ages and the ages of several geological events, including mass extinctions and oceanic anoxia, is found to have improved steadily as more data have become available, to the point that the list of trap ages may coincide with many major divisions in the geological time scale. The four largest mass extinctions in the last 260 Ma coincide to the best resolution available with four traps, making a causal connection between the two through some form of catastrophic climatic perturbations the most likely hypothesis. The time sequence of LIPs appears to have been random and there is no robust evidence for long time trends in the corresponding crustal production rate over the last 260 Ma.  相似文献   

19.
The seismic probing of the crust and upper mantle in Canada started in 1938 and since then has involved many government and university groups using a wide variety of techniques. These have included simple profiling with both wide and narrow station spacing, areal time-term surveys, detailed deep reflection experiments, very long-range refraction studies and the analysis of surface wave dispersion between stations of the Canadian Standard Network.

A review of the published interpretation leads to the general conclusion that:

1. (1) Pn-velocities vary from a value possibly as low as 7.7 km/sec under Vancouver Island to 8.6 km/sec and higher in the extreme eastern part of the shield and some parts of the Atlantic coast.

2. (2) Large areas of Canada have a crustal thickness of 30–40 km, with Vancouver Island, the southwestern Prairies, the Lake Superior basin and parts of the eastern shield of Quebec being thicker. No continental area in Canada is known to have a crust thinner than 29 km.

3. (3) The Riel discontinuity — a deep intra-crustal reflector and sometime refractor, is widely reported in the Prairies and Manitoba. It is not seen to the north in the vicinity of Great Slave Lake, nor in the Hudson Bay, Lake Superior and Maritime regions, nor in the interior of British Columbia. It may be present in some areas of the eastern shield.

4. (4) As experiments have become more detailed, crustal structures of greater complexity have been revealed. The concept that crustal structure becomes simpler with increasing depth is apparently unfounded.

Long-range refraction studies suggest that the Gutenberg P-wave low-velocity channel is poorly developed under the Canadian Shield. The analysis of the dispersion of surface waves, however, suggests that the channel is better developed for S-waves, and is present throughout the country. The lid of the channel is deepest under the central shield and shallowest under the Cordillera.  相似文献   


20.
Combined 147Sm---143Nd and the now extinct [τ(1/2)146=103×106 yr] 146Sm---142Nd isotopic systematics are reported for early Archean gneisses from Greenland (Amîtsoq and Akilia associations), and Canada (Acasta gneiss). Using both field relationships and high resolution U---Pb SHRIMP ion-probe ages, it has been possible to identify the most ancient rocks in these terrains for isotopic analyses. Preliminary 142Nd analyses of a still limited number of samples have failed to identify terrestrial 142Nd anomalies. Effects, if present, are limited to < 10 ppm and we have thus been unable to confirm the +33±4 ppm ε142 value claimed by Harper and Jacobsen (1992a, b) for a single sample. From the lack of 146Sm---142Nd effects we infer that large-scale fractionation events that may have occurred in the first 200 Ma of Earth history did not leave a significant nor widespread imprint on the early Archean mantle or crust. If a terrestrial magma ocean, with associated LREE fractionation, formed as a result of planetary accretion, then it had a lifetime of at most 250 m.y. before being remixed into the Earth's mantle.

The samples analysed in this study have a range of ε143 values including highly positive values of up to +4.2. This requires that the earliest known Archean crust was differentiated from a reservoir that was strongly depleted in the LREE as compared with chondritic compositions. In the early Archean it is proposed that the depletions in LREE are a consequence of extraction of a limited fraction of the Earth's continental crust ( < 10%) from the upper 200 km of the mantle. A three reservoir model, consisting of the continental crust, depleted mantle and a more primitive mantle reservoir can be extended to account for both the present-day, as well as the evolving Nd isotopic composition of the Earth's crust and mantle. In contrast to previous models, the rate of growth of the continental crust is used as an input parameter to constrain the concomitant growth and evolution of the depleted mantle reservoir. Recycling of large volumes of bulk continental crust into the mantle is not considered to be an important process, nor is the existence of an additional major enriched component in the early Archean mantle.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号