首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hans Jürgen Hahn   《Limnologica》2005,35(4):248-261
(1) A new method of sampling stygofauna is presented, along with some data derived from applications in the field. Numerous bores were sampled for fauna, water and bacteria, down to a depth of 7.50 m. Two or 3 unbaited traps were fixed to a central pole within the bore. The traps consist of an inert plastic chamber with holes in the upper parts and gaskets near the bottom and near the lid of each trap. The content of the traps was emptied monthly using a pump.

(2) While the taxonomic composition of the trap samples seemed to be comparable to the surrounding groundwater, estimation of abundances in the traps might differ, with a potential over-estimation in the traps, in particular in sparsely populated aquifers. Detailed comparative studies on the performance of the method are, as yet, lacking.

(3) Trap data of invertebrate communities reflect hydraulic changes, and highest abundances and taxa richness were found near the water table. They decreased rapidly with depth, implying that small-scale stratified sampling is possible.

(4) The technique is cheap, reliable, simple and rapid to use, and allows simultaneous sampling of hydro-chemical, faunal and microbial samples. The method seems to be suitable for a wide range of sub-surface waters, where the water table is shallower than 8 m.

Keywords: Stygofauna; Groundwater; Phreatic traps; Sampling method; Hydrological exchange  相似文献   


2.
The relationship between maximum concentration and longitudinal distance, independent of time, can determine the size of the area to be contaminated, under well-defined conditions of injection and flow in a saturated medium. The envelope curve for maximal concentrations is easily obtained as a function of the axial distance in non-dimensional variables in the cases of one- and two-dimensional uniform flow, as well as in those of radially symmetric converging or diverging flow.

Graphs providing relations between dimensionless variables (as described in the text) are given for the following cases:

1. (1) uniform flow with instantaneous discharge of a pollutant; measurement downstream of the injection point, no transverse dispersion;

2. (2) uniform flow with continuous injection of a pollutant; measurement downstream of the injection point, influence of transverse dispersion included;

3. (3) convergent radial flow towards a well; pollution caused by an instantaneous pointsource at some distance; and

4. (4) divergent radial flow from an injection point; pollution caused by instantaneous injection of a pollutant.

Résumé

L'expression de la concentration maximale en fonction de la distance et indépendamment du temps permet de déterminer l'extension d'une zone susceptible d'être contaminée lors de conditions bien définies d'injection d'un produit dangereux et d'écoulement en milieu saturé. La courbe enveloppe des maxima de concentration en fonction de la distance axiale est facilement exprimable sous forme adimensionnelle (abaques) dans le cas d'écoulements uniformes mono- et bi-dimensionnels (réponse dans l'axe), comme dans ceux d'écoulements purement cylindriques convergent ou divergent.  相似文献   


3.
4.
The dynamics of dissolved and particulate N, P and organic C were examined for field drains, through a headwater (4 km2), into a mesoscale stream (51 km2) and river (1844 km2) catchment. Distributions of N and P forms were similar in the agricultural headwater and field drains; annual P fluxes of particulate and dissolved forms were of equal magnitude, whilst N was dominated by NO3–N. Across all scales organic P was an important, often dominant, component of the dissolved P. Temporal variation in nutrient concentrations and proportions was greatest in the headwater, where storms resulted in the generation of large concentrations of suspended particulate matter, particulate and dissolved P, particularly following dry periods. The data suggest that groundwater and minor point source inputs to the mesoscale catchment buffered the temporal variability in hydrochemistry relative to the headwater. Summer low flows were associated with large PO4–P concentrations in the mesoscale catchment at a critical time of biological sensitivity. At the largest river catchment scale, organic forms of C, N and P dominated. Inorganic nutrient concentrations were kept small through dilution by runoff from upland areas and biological processes converted dissolved N and P to particulate forms. The different processes operating between the drain/headwater to the large river scale have implications for river basin management. Given the prevalence of organic and particulate P forms in our catchment transect, the bioavailability of these fractions needs to be better understood.  相似文献   

5.
Most of the streams in the Mediterranean region are temporary, following predictable seasonal of flooding and drying, with a transition from lotic conditions to shallow lentic conditions. The goal of our study was to assess the nitrogen and phosphorus dynamics in channel-bed processes of temporary streams between floods. Results show that, during winter, temperatures ranged between 9.5 and 11.2 °C and oxygen concentration ranged from 8.0 to 9.5 mg L−1, whereas, during summer, temperatures varied between 21.2 and 26.8 °C and oxygen between 1.2 and 5.3 mg L−1, with oxygen depletion in the pools during the night. The nitrate concentrations were far more abundant during winter (February), while ammonium concentration increased after stream fragmentation into pools (especially in July when oxygen depletion conditions favoured ammonification). Results on sediment profiles showed that the most active sediment layers for NH4-N are the top 2–3 cm, corresponding to the sediment depositional sites of the stream. Phosphate concentrations had larger variability, yet concentrations decreased from winter to spring and increased again in summer, when the shallow water pools were formed. Sediment profiles at the sediment depositional sites showed that PO4-P was more dynamic in the first 6 cm.

In Mediterranean temporary streams, nutrient dynamics vary seasonally, as the system transits from lotic conditions to shallow lentic conditions, evidencing the regeneration of nutrients from organic and inorganic matter during the flow cessation period.  相似文献   


6.
The toxicity of marine sediments in Victoria Harbour, Hong Kong   总被引:4,自引:0,他引:4  
When the toxicity of marine sediment in Hong Kong was evaluated, it was found that the seven sediments collected within Victoria Harbour were severely contaminated with heavy metals, at concentrations many times higher than those in sediments collected from outside the harbour. The highest metal content was recorded in site VS14 (located near the airport runway and the industrialized area), with copper, zinc, lead and chromium values of 3789, 610, 138 and 601 mg kg−1 dry wt, respectively. This site also had the greatest alkaline phosphatase activities (15 fluorescent intensity unit g−1 wet wt), the largest number of total coliforms (910 CFU g−1 wet wt) and sulphate-reducing bacteria (8.5 × 104 cells g−1 wet wt), implying that site VS14 was also contaminated with organic matter and nutrients. Sediment bioassays, Microtox and algal tests, demonstrated that sediment elutriates obtained from site VS14 were of greatest toxicity. The EC10 value in Microtox tests was 17% elutriate, and the 96-h IC50 values using Skeletonema costatum and Dunaliella tertiolecta were 40 and 79% elutriate, respectively. No toxic effects were found in sediment samples collected from the control site outside Victoria Harbour. Significant correlations were found between the results of the algal toxicity test (using S. costatum) and the coliform count and metal content of the sediments. The Microtox test was less sensitive than the algal bioassay, and no sediment elutriate, even from the site mostly contaminated by heavy metals, caused more than 50% inhibition of the light-emitting activity of the bacteria. In this study, S. costatum (the diatom) provided a more sensitive and reliable test species than D. tertiolecta (the flagellate) in differentiating the toxicity of marine sediments.  相似文献   

7.
Four streams in the city of São Gonçalo, were sampled to evaluate their potential as sources of nutrients to Guanabara Bay aiming to contribute with the government program to decrease the levels of pollution in this area. Imbuaçu, Guaxindiba, Marimbondo and Brandoas streams were sampled in 2007, 2008 and 2009. The streams revealed to be hipereutrophic with severe limitation of primary production by nitrogen, as shown by the N/P molar ratio. Phosphate levels were abnormally high varying between 4.35 and 130.82 μM, whereas nitrate and nitrite ranged from 0.06 to 54.05 μM and from 0.28 to 19.23 μM, respectively. The streams also presented severe hypoxia and anoxia, with oxygen values varying from non-detected to 3.72 ml l−1. Heavy loads of particulate suspended material were recorded in the studied streams, ranging between 6.00 and 400.00 mg l−1. The streams were considered inexorable sources of nutrients, enhancing the severe eutrophication process in Guanabara Bay.  相似文献   

8.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

9.
Phytoplankton from Lake Ontario and six small Canadian lakes (Dorset Lakes) were supplemented with nitrogen (N) and phosphorus (P) to determine how nutrients affect Photosystem II (PSII) variable fluorescence and photoinhibition in natural freshwater communities. Susceptibility of PSII to photoinhibition by photosynthetically active radiation (PAR) and ultraviolet radiation (UVR), as well as recovery potential, was quantified using changes in variable fluorescence and compared between N- and P-supplemented (Nu+) and non-supplemented (Nu?) Lake Ontario phytoplankton. Nu+ communities exhibited slightly higher variable fluorescence than Nu? when dark-adapted (Fv:Fm) or under constant illumination (Fq′:Fm′). Rates of relative electron transport (rETR) were greater for Nu+ than Nu? phytoplankton, with higher non-photochemical quenching (NPQ) by Nu? samples. The initial slope of the rETR-irradiance curve (α) did not differ significantly between nutrient treatments, but the saturation irradiance (EK) was significantly higher for Nu+ samples than for Nu? samples. Nutrient supplementation increased rates of PAR- and UVR-dependent damage but also recovery, so that net PSII photoinhibition was equally severe as in the absence of added N and P. Additions of N, P, and N + P did not significantly alter Fv:Fm of Dorset Lakes phytoplankton. Compared to the range of variable fluorescence observable over the diel cycle of photoinhibition and recovery in Lake Ontario, the effects of supplemental nutrients observed in this study were minor.  相似文献   

10.
Fifty streams, located in southern Ontario, Canada, were visited in September 2008 to investigate the effect of varying land use, land cover, and associated resource inputs on water column bacterial abundance (BACT), production (BP), and extracellular enzyme activity and stoichiometry. Principle components analysis was used to summarize landscape data, producing three components (PCs), which explained 79.2% of the variability in the data. The PCs grouped into the following gradients: (PC1) urban land use and continuous annual cropping to wetland-like cover, (PC2) rotational cropping to forest-like cover, and (PC3) increasing rural and agricultural land uses with increasing watershed size. These landscape gradients created imbalanced resource availability. Nutrient resources were more abundant in streams with more intensive anthropogenic land uses, but carbon availability was primarily controlled by the abundance of natural land covers (wetland and wooded areas). BACT, BP, and enzyme activities were positively related primarily to nutrient availability and/or anthropogenic land use (Stepwise R 2 range: 0.33?C0.73). The ratio of ??-glucosidase to alkaline phosphatase activity approached a 1:1 balance with increasing anthropogenic land use, decreased wetland and forest cover, and increased total dissolved nitrogen. The ratio of leucine-aminopeptidase to alkaline phosphatase activity approached 1:1 with both increased dissolved organic carbon and nitrogen. Moreover, enzyme C:N:P ratios moved closer to 1:1:1 with faster water column bacterial turnover times. These results suggest that water column microbial communities are better able to balance resource availability with growth in streams receiving nutrient subsidies from anthropogenic sources and under these conditions when carbon resources increase.  相似文献   

11.
Most ecosystems have a certain assimilative capacity regarding plant nutrient or biodegradable organic matter. Knowledge of the metabolizing processes of different ecosystems enable the use of natural systems for pollution abatement from agricultural, domestic and industrial sources. Such ecologically engineered natural systems are often very cost efficient. At the Centre for Soil and Environmental Research (JORDFORSK) studies of degradation processes and the fate of plant nutrients in small streams, ponds, wetlands, vegetative filter strips and soil are being conducted in order to gain experience with and develop self purifying methods. Preliminary results show that denitrification in streams remove only a minor part of the annual nitrogen (N) transport (1–15%), but that this process can remove a considerable part of the N transport during summer. Constructed ponds and wetlands in streams draining agricultural areas showed 10–56% retention of soil particles, 23–40% of phosphorous (P) and 5–13% of N. Narrow ponds had a higher efficiency than wide ponds per unit surface area. Short-term experiments with vegetative strips treating agricultural runoff show a sediment removal of over 95%, a P removal from 80–90% and N removal between 60 and 75%. A multistage subsurface constructed wetland treating domestic waste-water removed an average of 97% P, 91% BOD, 80% of suspended solids, 55% N and 99.9% E. coli over the first 18 months of operation. Preliminary results from a multistage plant with constructed ponds and wetlands treating landfill leachate show high treatment efficiency for the same parameters. A rapid infiltration plant in northern Norway showed an average removal of 99% P, 90% COD and 73% N after 4 years of operation. These results show that self purifying measures offer potential for design of pollution abatement systems for agricultural as well as domestic purposes in the Norwegian climate.  相似文献   

12.
The transformation of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorous (SRP), and the release of dissolved organic and particulate N and P, were analyzed in two lake complexes (Uzlina–Isac and Puiu–Rosu–Rosulet) of the Danube Delta wetland during flood conditions in May and at low water level in September 2006. The Uzlina–Isac complex was hydrologically tightly-connected with the Danube River and was flushed with river-borne nutrients and organic matter. These lakes acted as effective transformers for nutrients and produced large amounts of fresh biomass, that promoted the excretion of dissolved organic N and P during active growth. Biomass breakdown created particulate matter (<0.45 μm), which was widely liberated during low flow in the fall. The Puiu–Rosu–Rosulet complex was characterized by a more distant position to the Danube and proximity to the Black Sea, and received dominantly transformed organic compounds from the flow-through water and vast vegetation cover. Due to reduced nutrient input, the internal production of organic biomass also was reduced in these more remote lakes. Total N and P export from the lake nearest to the shelf was governed by dominantly dissolved organic and particulate compounds (mean 58 and 82%, respectively). Overall, this survey found that these highly productive wetlands efficiently transform nutrients into a large pool of dissolved organic and particulate N and P. Hence, wetland lakes may behave widely as net sources of organic N and P to downstream waters and coastal marine systems.  相似文献   

13.
The availability and partition of nitrogen (N) and phosphorus (P) in inorganic and organic compartments, as well as their stoichiometric ratio, are influenced by both physical and biological forcing factors. On this basis, the temporal and spatial dynamics in N:P atomic ratios in different compartments may provide information on the functioning of marine ecosystems. Here we explore the relative importance of water temperature, river inputs, wind mixing, stratification, ingression of nutrient-depleted Eastern Adriatic Current and phytoplankton biomass on concentrations and ratios between nitrogen and phosphorus in a semi-enclosed bay (the Gulf of Trieste), using data from monitoring programs carried out during 8 years. Water samples are first classified in 6 water types based on N:P ratios in different components, and then relationships between water type space-time distribution and a set of forcing factors is sought. Results show that the gulf is characterised by relatively stable N:P ratios in all compartments (about 23-26), always exceeding the classical Redfield ratio. In the surface layer, however, nitrogen and phosphorus dynamics are decoupled because of river input and plankton productivity, and a significant spatial and temporal variability is observed in terms of stoichiometric balance, nutrient concentrations and partition among the different pools. Deviations from stable N:P ratios follow a seasonal evolution. In spring, continental inputs alter inorganic nutrient compartments (N:P up to 115); later on, during the seasonal succession of biological processes (e.g. late spring phytoplankton blooms, summer increase in microbial activities and autumn phytoplankton blooms), a change is also seen in the organic dissolved and particulate pools. Multivariate statistical analysis suggests that, among the considered forcing factors, the most relevant in modulating the N:P stoichiometry in the Gulf of Trieste are river inputs and ingression of the Eastern Adriatic Current (acting in opposite directions) along with phytoplankton dynamics. During the whole period, besides variations in N:P stoichiometry, in the Gulf of Trieste dissolved organic matter represents the largest pool of N and P, which can provide a source of nutrients for the planktonic community alternative to inorganic nutrient.  相似文献   

14.
The biogeochemistry of riparian alder wetlands was studied from 1995 to 1997. Nutrient and DOC chemistry was related to water level changes. The spatial and temporal patterns of nutrients (P and N) and dissolved organic carbon (DOC) were measured in the surface water flowing through a riparian alder fen and in the adjacent creek. Nutrient and DOC concentrations were extremely variable temporally but not spatially within the wetland. In the wetland and the adjacent creek concentrations of NO3-N, PO4-P and DOC were homogenous during high-flow periods and frozen conditions. After low-flow conditions water bodies were isolated from the creek. The concentration of NH4-N, PO4-P and DOC in these isolated water bodies was significantly higher than in the adjacent creeks due to low oxygen levels.

Enclosures of different sizes were installed in the wetland to study possible release rates. A large enclosure experiment in the flooded alder fen showed the same concentrations as after high-flood conditions except for DOC. The DOC concentrations were enriched in the large enclosure after decomposition from leaf litter during fall season. Small enclosures with low oxygen levels confirmed data obtained from low-flow conditions. The release rates were calculated for low-flow conditions from small enclosure experiments for 2 months a year when the alder fen is not flooded. The rates for July and August were 11.6 kg/ha NH4-N, 8.6 kg/ha PO4-P and 57.6 kg/ha DOC. The DOC concentrations for fall estimated from the large enclosure-experiments were 168.2 kg/ha for the months September and October.

This means possible output rates of N, P and DOC during the summer and DOC during fall in the adjacent river system. This can cause eutrophication and organic pollution depending on the length of the low-flow conditions and the size of the alder fen. Water level changes must be regarded as important for the management of riparian wetlands such as alder fens. The riparian alder system may vary from a nutrient sink to a nutrient source at different times of a year depending on high or low water levels.  相似文献   


15.
淀山湖、小兴凯湖和洱海分别处在不同的营养阶段,夏季都存在蓝藻水华现象,有效控制蓝藻水华应控氮还是控磷一直存在争议.本研究采用营养物加富生物测试的试验方法,研究和比较三个湖泊限制性营养元素(N和P)夏季对浮游藻类生长的刺激作用,并采用多因素方差分析和两两比较方法(LSD)检验试验结果的显著性.结果表明:淀山湖(TN/TP=10左右)、洱海(TN/TP=29左右)、小兴凯湖(TN/TP=9左右)在夏季分别表现出显著的氮响应、氮磷双重响应、氮响应;较低氮磷比的营养程度较高的湖泊(淀山湖和小兴凯湖)夏季应控制氮含量,若添加氮更容易引发蓝藻(微囊藻)水华,而高氮磷比的初期富营养化湖泊(洱海)夏季应同时控制氮磷含量,同时添加氮磷的交互作用容易引发蓝藻(微囊藻)水华.  相似文献   

16.
The decrease and degradation of the tropical forests affect not only the production of timber but also the global environment in a large scale. The ability of soil to sustain and its supply of nutrients to a growing forest are controlled by a complex of biogeochemical processes. The purpose of the present study aims to assess the degraded forest fringe areas, to promote plantations of various types and to evaluate their impacts on the soil nutrients and carbon content accumulation. The soil organic carbon (SOC) and nutrient content were evaluated and compared between plantations of mixed native species (MNS), some native tree species as Shorea robusta, Dalbergia sissoo, Dendrocalamus spp., certain agro‐forestry species and some exotic varieties. The impacts of the plantations on the SOC and the nutrients were firstly analyzed through comprehensive chemical analyses and the results were compared with the soil samples collected prior to plantation forestry. Significant changes were observed in SOC content, in nutrients, and in amounts of exchangeable cations. Soil carbon levels were highest under the MNS, Dendrocalamus and Tectona grandis stands and lowest under D. sissoo and Terminalia arjuna. Total N showed highest levels under Dendrocalamus and Pongamia pinnata and significantly higher in stands of native species; lowest total N level was observed in D. sissoo plantations. The C/N ratios of the soil varied between 9.2 and 13.5 among the exchangeable cations. Ca2+ recorded the maximum levels and Na+ showed the lowest levels.  相似文献   

17.
Little research has examined whether forests reduce stream water eutrophication in agricultural areas during spring snowmelt periods. This study evaluated the role of forests in ameliorating deteriorated stream water quality in agricultural areas, including pasture, during snowmelt periods. Temporal variation in stream water quality at a mixed land‐use basin (565 ha: pasture 13%, forestry 87%), northern Japan, was monitored for 7 years. Synoptic stream water sampling was also conducted at 16 sites across a wide range of forest and agricultural areas in a basin (18.3 km2) in spring, summer and fall. Atmospheric nitrogen (N) and phosphorus (P) deposition were measured for 4 years. The results showed that concentration pulses of nitrate, organic N and total P in stream water were observed when discharge increased during spring snowmelt. Their concentrations were high when silicate concentrations were low, suggesting surface water exported from pasture largely contributed to stream water pollution during snowmelt. Atmospheric N and P deposition (4.1 kg N ha?1 y?1; 0.09 kg P ha?1 y?1, respectively) was too low to affect the background concentrations of N and P in streams from forested areas. Reduction of eutrophication caused by nutrients from pasture was mainly due to dilution by water containing low concentrations of N and P exported from forested areas, whereas in‐stream reduction was not a dominant process. Results indicate that forests have a limited capacity to reduce the concentration pulses of N and P in stream water during snowmelt in this study basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Spatial and temporal measurements of shallow sub-surface soil physical properties were made within a 1 km2 upland catchment. The surface soil layer of the catchment was organic rich (>70% organic matter) with a corresponding total porosity of 81%. Monthly point observations of volumetric water content (θ) were combined with point estimates of total porosity () and the porosity <50 μm (residual), to define the ratio of water filled pore volume:pore volume in pores <50 μm (=θ/residual). Values of θ/residual were compared with discharge to test whether mass flow occurred when θ/residual>1. A correlation between water content and discharge was found, with discharge increasing rapidly when θ/residual approached unity. Similar relationships between water content and catchment discharge were identified for soil units adjacent to the stream when θ/residual approached unity. These data suggest that soil pores >50 μm are of crucial importance in determining catchment discharge. Spatial and temporal variations in soil properties related to moisture content of the soil were also observed. Under dry conditions, a clear division based on aspect was noted, the west-facing side of the catchment being wettest. In wetter months, total porosity and soil water content were significantly affected by soil type and the spatial pattern of soil water content was more variable than in the dryer months. The physical quantification of soil properties in the shallow sub-surface layer proved important in explaining different initial changes in discharge from the catchment in response to a rainfall event.  相似文献   

19.
三峡水库对长江N、P营养盐截留效应的模型分析   总被引:23,自引:2,他引:21  
张恩仁  张经 《湖泊科学》2003,15(1):41-48
在长江流域干支流NP营养盐现场观测资料的基础上利用模式分析的方法分析了三峡水库对上游营养盐的截流效应. 三峡水库投入使用后发育出的水库生态系统可将上游输入的2%-7%溶解态无机氮和13%-42%的溶解态无机磷固定于浮游生物中库区水体中生物有机碳总量可保持在0.84109-2.65109mol的范围. 相应地三峡工程可减缓长江下游及长江口区的富营养化趋势但却在一定程度上加剧了长江中下游营养盐N/P比上升的趋势.  相似文献   

20.
Although anaerobic metabolism in lake sediments is strongly related to organic material from the trophogenic layer, little is known about the role of food web structure in this respect. We tested the influence of planktivorous fish (treatments with or without fish, ±F) and nutrients (treatments with or without fertilization, ±N) on chlorophyll a, zooplankton, sedimentation of particulate organic carbon (POC), and methane accumulation in large enclosures with anoxic hypolimnia (10 m diameter, 8 m deep, 2 × 2 factorial design). Additionally, methane production potential from settled material was estimated in laboratory experiments. In the enclosures, methane accumulation rate increased in the order +F/−N, −F/+N, −F/−N, and +F/+N, while POC sedimentation was similar in all treatments. Settled POC was more efficiently transformed into methane in −F/−N than in +F/−N treatments. However, an opposite effect was observed between −F/+N and +F/+N treatments. In the laboratory, methane production potential was higher when (1) POC content in settled matter increased, and (2) no fish were present. This corresponded well only to field results obtained in −F/−N and +F/−N treatments. The unexpectedly high methane accumulation in the +F/+N treatment was very likely related to abrupt depletion of other electron acceptors in the hypolimnion, which attenuated effects of food web structure. In conclusion, our results indicate that food web structure indirectly affects anaerobic microbial activity primarily due to changes in the decomposition potential of settled organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号