首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Global increases in intensive forestry have raised concerns about forest plantation effects on water, but few studies have tested the effects of plantation forest removal and native forest restoration on catchment hydrology. We describe results of a 14-year paired watershed experiment on ecological restoration in south central Chile which documents streamflow response to the early stages of native forest restoration, after clearcutting of plantations of exotic fast-growing Eucalyptus, planting of native trees, and fostering natural regeneration of native temperate rainforest species. Precipitation, streamflow, and vegetation were measured starting in 2006 in four small (3 to 5 ha) catchments with Eucalyptus globulus plantations and native riparian buffers in the Valdivian Coastal Reserve. Mean annual precipitation is 2500 mm, of which 11% occurs in summer. Streamflow increased, and increases persisted, throughout the first 9 years of vigorous native forest regeneration (2011 to 2019). Annual streamflow increased by 40% to >100% in most years and >150% in fall and summer of some years. Streamflow was 50% to 100% lower than before treatment in two dry summers. Base flow increased by 28% to 87% during the restoration period compared to pre-treatment, and remained elevated in later years despite low summer precipitation. Overall, these findings indicate that removal of Eucalyptus plantations immediately increased streamflow, and native forest restoration gradually restored deep soil moisture reservoirs that sustain base flow during dry periods, increasing water ecosystem services. To our knowledge this is the first study to assess catchment streamflow response to native forest restoration in former forest plantations. Therefore, the results of this study are relevant to global efforts to restore native forest ecosystems on land currently intensively managed with fast-growing forest plantations and may inform policy and decision-making in areas experiencing a drying trend associated with climate change.  相似文献   

2.
Sediment samples were collected from three seawater aquaculture ponds, and soil characteristics, sediment oxygen consumption (SOC), dissolved organic carbon (DOC) and nutrient fluxes were measured using chamber incubations at laboratory. The three ponds were each representing a specific monoculture or polyculture model of sea cucumber. Total organic carbon (TOC) and total nitrogen (TN) contents in the dry sediment ranged from 0.14 to 0.26% and 0.022 to 0.037%, respectively. Total phosphorus (TP) contents in the sediment were more spatially and temporally variable. SOC ranged from 15.29 to 45.86 mmol m–2 d–1 and showed significant differences among the three ponds (p < 0.05). TOC, total carbon (TC) contents, and SOC of the sediment in the pond polycultured with jellyfish increased with culture time, indicating that jellyfish farming enhanced the accumulation of organic matter in the sediments to some extent. Sediment showed net nitrate and ammonium uptake in most ponds and months, and significant differences were found among months (p < 0.05). Dissolved inorganic phosphate (DIP) was released from the sediments in all ponds with low flux rates. DOC was released from the sediment in all ponds and ranged from 0.67 to 1.74 g DOC m–2 d–1. The results suggested that non‐artificial‐feeding sea cucumber culture ponds could not only yield valuable seafood products, but also effectively remove nutrients from the aquaculture systems and consequently alleviate nutrient loadings of the nearby coast.  相似文献   

3.
为了揭示湖滨带土地利用与覆被改变对土壤有机碳库及生态功能的影响,本文选取了巢湖湖滨带(北岸)9个典型样方,分析和比较了表层(0~30 cm)土壤有机碳组分特征以及相关酶的活性.结果表明,巢湖湖滨带不同采样点土壤总有机碳(TOC)含量变化范围为2.88~11.2 g/kg,平均含量为9.12 g/kg,其中原生芦苇(Phragmites australis)湿地土壤TOC含量最高(11.2 g/kg),而芦苇群落消失后形成的荒滩土壤TOC含量最低,仅为2.88 g/kg.表征湖滨带湿地缓冲性能的土壤阳离子交换量(CEC)也以原生芦苇湿地土壤为最高,并与TOC含量呈现明显正相关.湖滨带表层土壤溶解性有机碳(DOC)和易氧化有机碳(EOC)含量变化范围分别为150~370 mg/kg和1.7~5.2 g/kg,其变化幅度明显高于TOC,其中DOC含量各采样点差异最为显著.除多酚氧化酶外,次生水柳林(Homonoia riparia Lour.)表层土壤几种酶的活性较原生芦苇湿地土壤皆有所上升,特别是蔗糖酶活性增加幅度最为明显.受人类活动干扰较大的湖滨绿地公园和人工草滩土壤过氧化氢酶、脲酶和蔗糖酶酶活性普遍显著低于原生芦苇湿地.除多酚氧化酶外,土壤中几种酶活性与土壤有机碳组分EOC和DOC含量均呈现显著的正相关,其中蔗糖酶活性与DOC含量之间相关系数最高(r=0.907),其相关性均达到极显著水平.土壤溶解性有机碳和蔗糖酶可以作为表征因土地利用与覆被变化导致湖滨带湿地退化以及生态恢复效果的敏感性指标.  相似文献   

4.
洞庭湖湿地3种典型植物群落土壤酶活性特征   总被引:2,自引:1,他引:1  
曾静  李旭  侯志勇  谢永宏 《湖泊科学》2017,29(4):907-913
调查了洞庭湖湿地典型植物群落(短尖苔草(Carex brevicuspis)、南荻(Triarrhena sacchariflora)、辣蓼(Polygonumhy dropiper))洪水期前后(5、10月)两次表层土壤酶活性及土壤养分性状.结果表明:3种典型群落之间具有明显的土壤养分性状及土壤酶活差异.辣蓼群落具有相对较高的土壤有机质、全氮、全磷、速效磷含量,短尖苔草群落次之,而南荻群落的土壤养分含量最低.3种典型植物群落的土壤有机质、全氮、全磷含量均表现为5月高于10月,土壤速效磷、速效钾洪水期前后无显著差异.辣蓼群落的蔗糖酶活性明显高于其他2个群落;3个群落脲酶活性均表现为10月高于5月,南荻、辣蓼群落有显著差异.磷酸酶以南荻群落最高,短尖苔草群落5月显著高于10月,南荻群落则10月显著高于5月;短尖苔草、南荻群落过氧化氢酶活性显著高于辣蓼群落,短尖苔草群落5月与10月间有显著差异,其余2个群落无显著差异.相关分析表明:脲酶活性与土壤养分含量关系不密切;蔗糖酶活性与土壤有机质、全磷、全氮及速效磷素含量均呈显著正相关.总体上,洞庭湖典型湿地植物群落显示了较为明显的土壤理化状况以及土壤酶活差异;同时也显示了季节性差异.相对而言,辣蓼群落土壤具有较快的物质循环与转化代谢速率,对于氮、磷等污染物具有较高的转化作用,而短尖苔草、南荻群落低于辣蓼群落,这可能与二者较低的土壤有机质以及氮磷养分积累有关.  相似文献   

5.
Large land areas in Sweden are planned to be planted with high producing, short rotation forest stands of willow in the beginning of the 1990s. Since willow is a highly hydrophilic species, this new land use may have strong implications on water resources. To assess these implications, evaporation of Salix viminalis and Salix viminalis x caprea stands in lysimeters was analysed with the simple, yet physically realistic KAUSHA model. Parameter values for the Lohammar equation were deduced (b = 100 m3 kg?1, kmax = 0.01 m s?1), believed to be applicable to other sites. Simulated evaporation during the 1980 growth season for a normal stand with a production of 12 tonnes of dry matter per hectare per season was 526 mm, of which 375 mm was transpiration, 56 mm interception evaporation, and 95 mm soil evaporation. For an optimally irrigated 20-tonnes stand, the total evaporation was 584 mm, of which 430 mm was transpiration. As a comparison, Penman open water evaporation was 430 mm. To avoid soil water stress in the 20-tonnes stand, 140 mm was needed as irrigation, equivalent to 25 per cent of the mean annual precipitation. Since intensively cultivated willow plantations seemed to be using much water, it was concluded that introduction of this agri-forestry practice must be carefully planned to make use of this property, e.g. in biological filters or in reclaiming water-logged land.  相似文献   

6.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The processes of species obtaining water resources are crucial to evaluate the adaptability of plantations, which can affect the establishment and survival of restored ecosystems and functions of water-limited ecosystems. However, there are still limitations in understanding water use patterns of different four plantations (Populus sylvestris, Salix cheliophe, Hippophae rhamnoides and Artemisia ordosica) in the Qinghai Lake basin. Stable isotopes of xylem water of four individual species were analysed at different dunes located at the eastern shore of Qinghai Lake in 2018 and 2019. The purpose of this study was to explore potential water sources used by different life form plants, to identify whether the soil moisture content and root distribution determined the plants water use patterns. Results from the Bayesian mixing model MixSIAR showed that all species mainly uses three levels of soil water, but they extracted soil water from different layers in different growing seasons among species. All species primarily depended on water from upper soil layers at the early growing stage, but P. sylvestris and S. cheliophe also absorbed much proportion middle and deep soil layers' water in dry year of 2019. All four species shift to use middle or deep soil layer water rather than shallow water in July with the most rainfall and soil water content (SWC). However, it was only used by P. sylvestris and H. rhamnoides in 2018. In all, seasonal water use pattern of different species was affected by SWC, soil texture and root distribution. Compared with moratorium plantations such as S. cheliophe, mixed afforestation of P. sylvestris and H. rhamnoides maximized of soil water sources absorbed by the plants. The study can shed light on plant–water relationships to facilitate the woody species for afforestation and desertification restoration management in the semi-arid desert ecosystem.  相似文献   

8.
The extension and structure of functional traits variation in response to different soil factors between invasive and native plants are poorly understood. Functional traits and soil factors of the invasive plant Amaranthus palmeri and its coexisting plant Polygonum orientale are investigated under three heterogeneous habitats: roadside (rs), wasteland (wl), and riverbank (rb) in Tianjin, China. The shoot dry weight (SDW) and leaf nitrogen (LN) of A. palmeri are significantly higher compared with P. orientale, while A. palmeri has significantly lower leaf dry weight (LDW), leaf area (LA), leaf carbon (LC), and leaf C/N ratio under different habitats. The larger phenotypic plasticity of A. palmeri is one of the important reasons for their successful invasion to heterogeneous habitats. Similarly, the soil water content (SWC) of both species shows a significant difference (p < 0.05) with maximum in riverbank habitat to lowest in roadside habitat. Soil N/P ratio, C/N ratio, and C/P ratio of rb habitats are significantly lower compared to wl and rs habitats (p < 0.05). A redundancy analysis indicates that SWC is the dominant soil factor affecting the functional traits of A. palmeri and P. orientale. However, A. palmeri forms an environmental adaptation strategy by changing traits of SDW, LN, and leaf C/N ratio, which is different from P. orientale by changing traits of LA and LDW.  相似文献   

9.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

10.
Land degradation due to soil erosion is a global problem, especially on cultivated hill slopes. Economically important aromatic grasses can protect degraded hill slopes more effectively than field crops, but little information is available on their performance. This study quantifies runoff, sediment yield,enrichment ratios of soil and nutrients, and sediment-associated organic carbon and nutrients losses under three aromatic grass species: citronella(Cymbopogon nardus), lemon(Cymbopogon flexuosus), and palmarosa(Cymbopogon martini), compared with a traditional field crop, finger millet(Eleusine coracana)grown at three land slopes(4%, 8%, and 12%). It was observed that the degree of slope and type of grass both significantly influenced runoff generation. Runoff and sediment yield(SY) were significantly higher at 12% slope than at 8% and 4% slopes. Relation between rainfall and runoff were significant for all the grass species(p 0.05). Palmarosa, lemon, and citronella grass reduced the SY by 10, 54, and 60%,respectively, over finger millet. SY was also significantly related to rainfall for all the treatments(p 0.05). The threshold runoff values to produce SY were higher for aromatic grasses compared to finger millet. Enrichment of clay, silt, sand, soil organic carbon(SOC), available nitrogen(N), phosphorus(P) and potassium(K) in the sediment were not significantly different between slopes but differed significantly between aromatic grasses and finger millet. Sediment associated nutrient load varied inversely with SY mainly because of the nutrient dissolution effect of high runoff volume. Annual loss of SOC and nutrients varied from 84.7-156.8 kg ha~(-1) y~(-1) for SOC, 4.38-9.18 kg ha~(-1) y~(-1) for available N, 0.35-0.75 kg ha~(-1) y~(-1) for available P, and 2.22-5.22 kg ha~(-1) y~(-1) for available K, with the lowest values for citronella and highest for finger millet. The study found that the aromatic grasses have greater environmental conservation values than finger millet on steep degraded land.  相似文献   

11.
Tidal flats, which are important reserved land resources, have a vital role in climate change. To evaluate the contribution of coastal saline soils to carbon sequestration, field tests were performed over a 3 year period at the Dafeng Wanggang Experimental Station in Jiangsu Province, China. Six artificial agro‐ecosystems, including wasteland (WL), freshwater fish culture (FC), Sesbania culture (SC), barley culture (BC), mixed culture of fish and Sesbania (MCFS) and mixed culture of fish and barley (MCFB), were established according to developmental processes of coastal saline soils. At the initial stage of tidal flat reclamation, the soil organic carbon (SOC) increased by 59.4 t ha?1 in the FC system during 3 years, which was much higher than that of the WL system (40.7 t ha?1). When the tidal flats evolved into high saline soils, the MCFS system sequestered SOC more effectively than the FC or SC systems with increases of 53.1, 16.9 and 8.3 t ha?1, respectively. Subsequently, in the low saline soils, the maximum soil carbon sequestration was obtained in the MCFB system (35.8 t ha?1) followed by the BC (17.5 t ha?1) and FC (13.5 t ha?1) systems. Therefore, proper development of tidal flats to farmland and the subsequent establishment of optimised artificial agro‐ecosystems make an important contribution to carbon sequestration and climate changes in coastal areas.  相似文献   

12.
Agroforestry systems are promoted for providing a number of ecosystem services and environmental benefits, including soil protection and carbon sequestration. This study proposes a modelling approach to quantify the impact of soil redistribution on soil organic carbon (SOC) storage in a temperate hedgerow landscape. Evolution of SOC stocks at the landscape scale was examined by simulating vertical and horizontal SOC transfers in the 0–105 cm soil layer due to soil redistribution by tillage and water processes. A spatially explicit SOC dynamics model (adapted from RothC‐26.3) was used, coupled with a soil‐redistribution model (LandSoil). SOC dynamics were simulated over 90 years in an agricultural hedgerow landscape dedicated to dairy farming, with a mix of cropping and grasslands. Climate and land use were simulated considering business‐as‐usual scenarios derived from existing information on the study area. A net decrease in SOC stocks was predicted at the end of the simulation period. Soil redistribution induced a net SOC loss equivalent to 2 kg C ha?1 yr?1 because of soil exportation out of the study site and an increase in SOC mineralization. Hedgerows and woods were the only land use in which soil redistribution induced net SOC storage. Soil tillage was the main process that induced soil redistribution within cultivated fields. Soil exportation out of the study area was due to erosion by water, but remained low because of the protective role of the hedgerow network. These soil transfers redistributed SOC stocks in the landscape, mostly within cultivated fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
为明确消落区土壤养分对植物生长的影响,通过室内栽培试验,研究三峡库区秭归消落区土壤3种氮磷水平下4种草本植物—鬼针草(Bidens pilosa)、苍耳(Xanthium sibiricum)、水蓼(Polygonum hydropiper)、藜(Chenopodium album)长势及氮、磷计量特征.结果表明,消落区土壤中生长的植物氮含量为7.98~19.4 mg/g,磷含量为0.740~3.880 mg/g,氮磷比为3.48~13.70,判别植物生长受氮限制.外源氮磷的添加促进植物氮、磷含量明显升高,但氮磷比没有明显变化;外源氮磷添加解除植物受氮的限制作用.4种植物对消落区土壤低氮环境具有一定的适应能力.比较消落区土壤中4种植物长势,鬼针草生物量、相对生长率、根茎生物量比最高,氮磷养分丰富对鬼针草生长促进作用最明显,表明鬼针草更易于在氮、磷贫乏的三峡库区消落区形成优势群落.  相似文献   

14.
Reliable quantitative data on the extent and rates of soil erosion are needed to understand the global significance of soil‐erosion induced carbon exchange and to underpin the development of science‐based mitigation strategies, but large uncertainties remain. Existing estimates of agricultural soil and soil organic carbon (SOC) erosion are very divergent and span two orders of magnitude. The main objective of this study was to test the assumptions underlying existing assessments and to reduce the uncertainty associated with global estimates of agricultural soil and SOC erosion. We parameterized a simplified erosion model driven by coarse global databases using an empirical database that covers the conterminous USA. The good agreement between our model results and empirical estimates indicate that the approach presented here captures the essence of agricultural erosion at the scales of continents and that it may be used to predict the significance of erosion for the global carbon cycle and its impact on soil functions. We obtained a global soil erosion rate of 10.5 Mg ha‐1 y‐1 for cropland and 1.7 Mg ha‐1 y‐1 for pastures. This corresponds to SOC erosion rates of 193 kg C ha‐1 y‐1 for cropland and 40.4 kg C ha‐1 y‐1 for eroding pastures and results in a global flux of 20.5 (±10.3) Pg y‐1 of soil and 403.5 (±201.8) Tg C y‐1. Although it is difficult to accurately assess the uncertainty associated with our estimates of global agricultural erosion, mainly due to the lack of model testing in (sub‐)tropical regions, our estimates are significantly lower than former assessments based on the extrapolation of plot experiments or global application of erosion models. Our approach has the potential to quantify the rate and spatial signature of the erosion‐induced disturbance at continental and global scales: by linking our model with a global soil profile database, we estimated soil profile modifications induced by agriculture. This showed that erosion‐induced changes in topsoil SOC content are significant at a global scale (an average SOC loss of 22% in 50 years) and agricultural soils should therefore be considered as dynamic systems that can change rapidly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (Vetiveria zizanioides L.), with or without chelating agents, in remediating lead (Pb)‐contaminated soils from actual residential sites where Pb‐based paints were used. Because the primary factor affecting Pb phytoavailability in soils is soil pH, we used two soil types widely varying in pH that have total Pb concentrations above 1500 mg kg?1 soil. Lead‐contaminated, low pH, acidic soils were collected from residential sites in Baltimore, MD and high pH, alkaline soils were collected from residential sites in San Antonio, TX. Based on the soil characterization results, two most appropriate soils (one from each city, having similar Pb levels but variable soil physico‐chemical properties) were selected for this study. Ethylenediaminetetraacetic acid (EDTA) and [S,S′]ethylenediaminedisuccinate (EDDS) were applied at 5, 10, and 15 mmol kg?1 soil. Lead uptake and translocation in vetiver was determined on day 10 after chelants addition. Plant and soil analysis show that EDTA treated soils have maximum Pb uptake and lower total soil Pb levels. Prediction models developed for exchangeable Pb show a strong correlation for total Pb accumulated in vetiver grass. Results of the sequential chemical extraction of the soils at both initial and final time‐points, indicates a significant mobilization of Pb by the two chelants from carbonate‐bound fraction to exchangeable pool. Information on physico‐chemical properties of contaminated residential soils help in predicting Pb phytoextraction and thus further help in calibrating a successful chelant‐assisted phytoremediation model.  相似文献   

17.
Despite soil erosion through water being a ubiquitous process and its environmental consequences being well understood, its effects upon the global carbon cycle still remain largely uncertain. How much soil organic carbon (SOC) is removed each year from soils by sheet wash, an important if not the most efficient mechanism of detachment and transport of surficial soil material? What are the main environnemental controls worldwide? These are important questions which largely remain unanswered. Empirical data from 240 runoff plots studied over entire rainy seasons from different regions of the world were analysed to estimate particulate organic carbon (POC) losses (POCL), and POC enrichment in the sediments compared to the bulk soil (ER), which can be used as a proxy of the fate of the eroded POC. The median POCL was 9.9 g C m‐2 y‐1 with highest values observed for semi‐arid soils (POCL = 10.8 g C m‐2 y‐1), followed by tropical soils (POCL = 6.4 g C m‐2 y‐1) and temperate soils (POCL = 1.7 g C m‐2 y‐1). Considering the mean POCL of 27.2 g C m‐2 y‐1, the total amount of SOC displaced annually by sheet erosion from its source would be 1.32 ± 0.20 Gt C, i.e. 14.6% of the net annual fossil fuel induced C emissions of 9 Gt C. Because of low sediment enrichment in POC, erosion‐induced CO2 emissions are likely to be limited in clayey environments while POC burial within hillslopes is likely to constitute an important carbon sink. In contrast, most of the POC displaced from sandy soils is likely to be emitted to the atmosphere. These results underpin the major role sheet wash plays in the displacement of SOC from its source and in the fate of the eroded SOC, with large variations across the different pedo‐climatic regions of the world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   

20.
Fast-growing forest plantations have been expanding in Brazil in the last 50 years, which reach productivities by over 40 m3 ha−1 year−1 in reduced rotation between 5 and 15 years. In the 1990s, environmental warnings about these plantations guided research projects seeking to understand their effects on water and propose forest management actions to minimize them. The assessment of forest management effects on water resources is conducted by long-term experiments in paired catchments. In this paper we present results of some studies conducted at the hydrological monitoring centre of Itatinga Experimental Forest Station, of the University of São Paulo, where hydrological monitoring began in 1987, and currently include three catchments (83–98 ha) under different forest management regimes: short-rotation Eucalyptus plantation, long-term forest plantation mosaic and native forest restoration. Results show that at similar conditions observed at study area including deep soils and good natural water regulation, hydrological effects vary according to the forest management regime adopted, increasing water consumption and making the flow regime vulnerable to intra- and inter-annual seasonality. Regarding water quality, weekly sampling results showed suspended sediments and nitrate concentrations below water quality thresholds criteria by silvicultural operations, and the effects were transient but higher concentrations of nutrients were observed in intensive management regime. In the study area, reducing the management intensity of forest plantation by increasing the rotation time, adopting forest age mosaic and avoiding the coppice technique are alternative choices that reduced water use and increased flow regulation. Different adopted forest management schemes directly affected water use, showing that in water-deficit tropical regions, management regime of fast-growing forest plantations controls water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号