首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Near 68° N the Scandinavian Caledonides are composed of 3 tectonic domains each of which has a different tectonostratigraphy. The lower 2 domains can be related stratigraphically to Scandinavia prior to Caledonian deformation, whereas the highest domain, the Middle Köli Nappe Complex (MKNC) represents a fore-arc accretionary complex that was accreted to Scandinavia during Caledonian deformation. Subsequent to accretion, the flyschoid sediments that dominate the MKNC were metamorphosed to the amphibolite facies. In the area covered by this study, the MKNC is composed of two nappes, a lower Langvatn nappe and an upper Marko nappe, each of which has a unique early metamorphic history. Pelitic mineral assemblages in the Marko nappe constrain the peak P-T to be: 625°<T<775° C and P>7.0 kbars whereas ultramafic mineral assemblages in the lower Langvatn nappe constrain its peak temperature to be <580° C. P-T estimates from garnet-biotite and garnet-plagioclase geothermobarometry for both nappes overlap; ranging from 528° C and 6.6 kbars to 620° C and 8.8 kbars, with an average of 567±32° C and 8.0±0.9 kbar.Analysis of garnet zonation profiles from low variance pelitic assemblages from the Marko nappe using the Gibbs method of Spear and Selverstone (1983) suggests that P-T paths showing cooling (37–125° C) and decompression (20–1700 bars) were followed during the development of the outer part of garnet zonation profiles. The slope of these retrograde P-T paths is approximately 15 bars/° C. Because of the high variance of pelitic assemblages from the Langvatn nappe P-T paths have not been determined.The retrograde cooling rate of the Marko nappe has been estimated by numerical modeling of garnet zonation profiles that are interpreted to have formed by volume diffusion during retrograde cooling. This modeling suggests that the Marko nappe cooled very rapidly (25–100° C/m.y.) between the metamorphic peak and the temperature at which cation-exchange reactions closed. The form of Langvatn nappe garnet zonation profiles suggests that it did not undergo this rapid cooling.The cooling rate estimated for the Marko nappe is probably too high to be produced by unroofing alone and may be the result of late metamorphic thrusting and imbrication within the MKNC during which the cooler Langvatn nappe was underthrust beneath the warmer Marko nappe. The metamorphic peak of the Marko nappe therefore predates the peak of the Langvatn nappe. The peak P-T of the Langvatn nappe and the P-T recorded by geothermobarometry (570° C, 8.0 kbar) approximates the conditions under which the two nappes were juxtaposed.  相似文献   

2.
Numerical models of the progressive evolution of pelitic schists in the NCMnKFMASH system with the assemblage garnet + biotite + chlorite ± staurolite + plagioclase + muscovite + quartz + H2O are presented with the goal of predicting compositional changes in garnet and plagioclase along different P-T paths. The numerical models support several conclusions that should prove useful for interpreting the P-T paths of natural parageneses: (i) Garnet may grow along P-T vectors ranging from heating with decompression to cooling with compression. P-T paths deduced from garnet zoning that are inconsistent with these growth vectors are self-contradictory. (ii) There is a systematic relation between garnet and plagioclase composition and growth such that for most P-T paths, garnet growth requires plagioclase consumption. Furthermore, mass balance in a closed system requires that as plagioclase is consumed the remaining plagioclase becomes increasingly albitic. Inclusions of plagioclase in the core of garnet should be more anorthitic than those near the rim and zoned matrix plagioclase should have rims that are more albitic than the cores. Complex plagioclase textures may arise from the local variability of growth and precipitation kinetics. (iii) A decrease of Fe/(Fe + Mg) in a garnet zoning profile is a reliable indicator of increasing temperature for the assemblage modelled. However, there is no single reliable ΔP monitor and inferences about ΔP can only be made by considering plagioclase and garnet together. (iv) Consumption of garnet during the production of staurolite removes material from the outer shell of a garnet and may make recovery of peak metamorphic compositions and P-T conditions impossible. Low ‘peak’temperatures typically recorded by staurolite-bearing assemblages may reflect this phenomenon. (v) Diffusional homogenization of garnet affects the computed P-T path and results in a clockwise rotation of the computed P-T vector relative to the true P-T path.  相似文献   

3.
Metamorphic P-T paths have been derived for staurolite-kyanitegrade and garnet grade rocks from the Orfordville Belt, west-centralNew Hampshire. P-T paths calculated from garnet zoning are consistentwith parageneses observed in amphibolites as determined froma petrogenetic grid derived for amphibolites. The P-T pathsfrom the staurolite-kyanite zone show a pressure maximum at6.5 to 7.5 kb and {small tilde} 500?C followed by heating anddecompression to approximately 5 kb, 580?C, and a final phaseof near isobaric cooling. The path from the garnet zone is similar,but does not show the final phase of isobaric cooling. Both nappe-stage and dome-stage folds are observed in the OrfordvilleBelt. Comparison of mesoscale structures with mineral growthindicates that the nappe stage deformation occurred near orbefore the pressure maximum and dome stage deformation tookplace along the decompression-heating path. The last phase ofnear isobaric cooling may have resulted from rapid verticalreadjustment of the Orfordville Belt.  相似文献   

4.
In the central Minto Block of northern Québec, the Lake Minto and Goudalie domains are dominated, respectively, by orthopyroxene-bearing plutonic suites (granite-granodiorite and diatexite) and a tonalitic gneiss complex, both of which contain scattered remnant paragneisses. Two main granulite-grade mineral assemblages are observed in the paragneiss: garnet (Grt)-orthopyroxene (Opx)-plagioclase-quartz (GOPQ) and garnet (Grt)-cordierite (Crd)-sillimanite-plagioclase-quartz (GCSPQ). These show distinct lithological associations, with the GCSPQ assemblages occurring exclusively within the diatexite in the Lake Minto domain. Petrogenetic grid considerations demonstrate that the GOPQ rocks are higher grade than the GCSPQ rocks. Maximum temperatures for GOPQ rocks, obtained from equilibria based on Al solubility in orthopyroxene in equilibrium with garnet, range from 950 to 1000d? C, significantly higher than garnet-orthopyroxene Fe-Mg exchange temperatures of 700 ± 50d? C, the latter probably representing a closure temperature below peak conditions. The Al temperatures were corrected for late cation exchange by adjusting the Fe/(Fe + Mg) ratios in garnet and orthopyroxene, to achieve internal consistency between the GOPQ thermometers and barometers. Grt-Crd thermometry records temperatures of 750±50d? C. Peak P-T conditions range from 5-6 kbar and 750-800d? C in the Goudalie and eastern Lake Minto domains, to 7-10 kbar and 950-1000d? C in the western and central Lake Minto domain. This variability contrasts with the uniform crustal pressures of 5 ± 1 kbar recorded by the GCSPQ assemblages in the diatexites and the hornblende granodiorites (c. 4-5 kbar) across the same area. The GOPQ rocks are inferred to record earlier P-T conditions that prevailed before the formation of GCSPQ assemblages and the intrusion of the granodiorites. Partial P-T paths in GOPQ rocks from both domains, based on net transfer equilibria corrected for Fe-Mg resetting, document cooling of 100-250d? C from thermal-peak conditions, concomitant with a modest pressure decrease of 2-3 kbar. Although textures diagnostic of isobaric cooling are not developed, the paths are consistent with a tectonic model in which granulite metamorphism and crustal thickening in the Minto Block were consequences of magmatic underplating. The progression from higher P-T conditions recorded by GOPQ assemblages to lower P-T conditions recorded by GCSPQ assemblages is attributed to variable amounts of synmagmatic uplift and cooling in a single, continuous thermal event in the Minto crust, associated with protracted crustal magmatism. In the Goudalie and eastern Lake Minto domains, where GOPQ and GCSPQ rocks and Hbl granodiorites have similar P-T conditions of equilibration, the crust may not have been thickened as much as further west, where GOPQ P-T conditions are significantly higher than those of the hornblende granodiorites and the GCSPQ rocks.  相似文献   

5.
Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica (Ellis et al. 1980) were metamorphosed at 8–10 kb pressure, 900°-980° C under very low conditions. Retrograde mineral coronas in these rocks record subsequent cooling from the peak of metamorphism at approximately constant pressure. The inferredP-T cooling-uplift path differs markedly from that evident in many other granulite terrains.Present garnet-cordierite geothermometers imply equilibration at temperatures of 500°–600° C, well within the kyanite stability field. These temperatures are inconsistent with the presence of sillimanite and the high temperature stability fields of the actual mineral assemblages. Examination of available garnetcordierite experimental data suggests a possible large increase in the Gt-Cd Fe-MgK D with increasingX Mg of the cordierite (and pressure). New experiments designed to test this possibility were inconclusive because of the failure to attain satisfactory equilibrium, even at 1,000° C.Possible reasons for the exposure of these unusual granulites in Enderby Land are considered. Although they formed at much higher temperatures than other granulites exposed on a regional scale, suchP-T conditions are not exceptional for the base of the crust. Instead, the unusual isobaric cooling to low temperatures followed by uplift to the surface which these granulites are inferred to have undergone is considered of importance. The unusual tectonic conditions are reflected in the disctinctive type of mineral reaction coronas found in these rocks. The common occurrence elsewhere of mineral reaction during uplift, and the role of anatexis during uplift in obliterating such high temperature assemblages elsewhere in the world are considered.  相似文献   

6.
The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.  相似文献   

7.
The solubility of alumina in orthopyroxene coexisting with garnet   总被引:5,自引:0,他引:5  
The solubility of alumina in complex orthopyroxenes crystallised in equilibrium with garnet has been determined over the pressure-temperature range 8–30 Kb and 800–1250° C. The results are in good agreement with predictions made using the simple thermodynamic model of Wood and Banno (1973). The model has been refined using a combination of the new data on orthopyroxenes of about En60Fs40 (with variable calcium content) and previously published data on more magnesian systems. Given analyses of coexisting Orthopyroxene and garnet in natural assemblages it is possible to calculate a P-T curve for the rock which should, in most cases, be accurate to within 2 or 3 kbar.  相似文献   

8.
P-T estimates from pelite thermobarometry along a transect through the Caledonian nappe stack in Ofoten, north Norway (68° 30° N) plot as a trend in P-T space (ranging from 443° C, 6.9 kb, to 688° C, 10.6 kb). The P-T range for each nappe overlaps the others, except for those from the lowest unit (Narvik Group) which has significantly higher values. Within the P-T ranges for each nappe, the position on the trend of a given sample is independent of its tectonic position. Results support our earlier conclusion, based on structural and petrographic grounds, that the regional metamorphic peak was reached during or after stacking of the nappes in the Siluro-Devonian Scandian orogeny.The P-T trend closely resembles a trend reported from the Narvik Group in a nearby area which was interpreted to record varying amounts of retrograde reequilibration during uplift and cooling and thus define a portion of the area's cooling trajectory. However, evidence for an earlier, higher P-T event recorded only in the Narvik Group includes: 1) the Narvik Group gives the only P-T values exceeding 630° C, 9kb; 2) it preserves the only evidence suggesting polymetamorphism; and 3) it underlies an unconformity which has been interpreted on regional grounds to record the Cambro-Ordovician Finnmarkian orogeny. Therefore, the Narvik Group P-T trend probably does not quantitatively constrain the cooling history during uplift but reflects superposition of metamorphism in the Finnmarkian and Scandian orogenies. A Monte Carlo analysis of error propagation applied to the thermobarometric calculations indicates that the trend at least partly resulted due to an artifact of errors introduced by analytical uncertainties in the microprobe analyses.  相似文献   

9.
Abstract Finite difference models of Fe-Mg diffusion in garnet undergoing cooling from metamorphic peak conditions are used to infer the significance of temperatures calculated using garnet-biotite Fe-Mg exchange thermometry. For rocks cooled from high grades where the garnet was initially homogeneous, the calculated temperature (Tcalc) using garnet core and matrix biotite depends on the size of the garnet, the ratio of garnet to biotite in the rock (Vgarnet/Vbiotite) and the cooling rate. For garnets with radii of 1 mm and Vgarnet/Vbiotite<1, Tcalc is 633, 700 and 777°C for cooling rates of 1, 10 and 100°C/Ma. For Vgarnet/Vbiotite= 1 and 4 and a cooling rate of 10° C/Ma, Tcalc is approximately 660 and 610° C, respectively. Smaller and larger garnets have lower and higher Tcalc, respectively. These results suggest that peak metamorphic temperatures may be reliably attained from rocks crystallized at conditions below Tcalc of the garnet core, provided that Vgarnet/Vbiotite is sufficiently small (<0.1) and that the composition of the biotite at the metamorphic peak has not been altered during cooling. Numerical experiments on amphibolite facies garnets with nominal peak temperatures of 550–600° C generate a ‘well’in Fe/(Fe + Mg) near the rim during cooling. Maximum calculated temperatures for the assemblage garnet + chlorite + biotite + muscovite + plagioclase + quartz using the Fe/(Fe + Mg) at the bottom of the ‘well’with matrix biotite range from 23–43° C to 5–12° C below the peak metamorphic temperature for cooling rates of 1 and 100° C/Ma, respectively. Maximum calculated temperatures for the assemblage garnet + staurolite + biotite + muscovite + plagioclase + quartz are approximately 70° C below the peak metamorphic temperature and are not strongly dependent on cooling rate. The results of this study indicate that it may be very difficult to calculate peak metamorphic temperatures using garnet-biotite Fe-Mg exchange thermometry on amphibolite facies rocks (Tmax > 550° C) because the rim composition of the garnet, which is required to calculate the peak temperature, is that most easily destroyed by diffusion.  相似文献   

10.
Diffusion modelling of growth-zoned garnet is used in combination with standard geothermometric and geobarometric techniques to estimate cooling and denudation rates from the mafic eclogites of the Red Cliff area, Great Caucasus, Russia. Euhedral garnet porphyroblasts exhibit different degrees of prograde growth zoning depending on the size of the grain (100 μm to several mm in diameter). Zoning patterns are mainly expressed in terms of Fe–Mg exchange, with 100*Mg/(Mg+Fe) increasing from 18–20 to 33–37 from core to rim. Geothermobarometry yields conditions of 680±40 °C and a minimum of 1.6±0.2 GPa and of 660±40 °C and 0.8±0.2 GPa for the high-pressure and retrograde stages of equilibration, respectively. A temperature of 600±40 °C has been recorded for the late-stage metamorphic overprint in the mica schists surrounding the eclogites. Relaxation of garnet zoning profiles was modelled for three different hypothetical PT t trajectories, all with an initial temperature of 680 °C and a pressure change of 0.8 GPa. The first two trajectories involve decompression associated with regular cooling down to 660 °C (near isothermal) and 600 °C. The third path is a two-step trajectory comprising near-isobaric cooling down to 600 °C followed by isothermal decompression to 0.8 GPa. These P–T trajectories cover as wide a range of pressure and temperature changes endured by the rocks as possible, thus representing extreme cases for calculating cooling and exhumation rates. Calculations indicate that the zoning pattern of the smallest garnet (i.e. garnet for which the zoning is most easily eliminated during post-growth processes) along the different paths can be preserved for the following average exhumation and cooling rates: path 1, 143 mm a?1 and 102 °C Ma?1; path 2, 60 mm a?1 and 171 °C Ma?1; path 3, 11–30 mm a?1 and 200–400 °C Ma?1. These results are discussed in light of theoretical P–T–t paths extracted from thermal models of regions of thickened crust, and from analogue models of accretionary wedge and continental lithosphere subduction.  相似文献   

11.
Compositional zonation in garnets in peridotite xenoliths   总被引:1,自引:0,他引:1  
Garnets in 42 peridotite xenoliths, most from southern Africa, have been analyzed by electron probe to seek correlations between compositional zonation and rock history. Xenoliths have been placed into the following 6 groups, based primarily upon zonation in garnet: I (12 rocks)-zonation dominated by enrichment of Ti and other incompatible elements in garnet rims; II (10 rocks)-garnet nearly homogeneous; III (8 rocks)-rims depleted in Cr, with little or no related zonation of Ti; IV (3 rocks)-slight Ti zonation sympathetic to that of Cr; V (3 rocks)-garnet rims depleted or enriched in Cr, and chromite included in garnet; VI (6 rocks)-garnets with other characteristics. Element partitioning between olivine, pyroxene, and garnet rims generally is consistent with the assumption of equilibrium before eruption. Although one analyzed rock contains olivine and pyroxene that may have non-equilibrated oxygen isotopes, no corresponding departures from chemical equilibrium were noted. Causes of zoning include melt infiltration and changes in temperature and pressure. Zonation was caused or heavily influenced by melt infiltration in garnets of Group I. In Groups III, IV, and V, most compositional gradients in garnets are attributed to changes in temperature, pressure, or both, and gradients of Cr are characteristic. There are no simple relationships among wt% Cr2O3 in garnet, calculated temperature, and the presence of compositional gradients. Rather, garnets nearly homogeneous in Cr are present in rocks with calculated equilibration temperatures that span the range 800–1500 °C. Although the most prominent Cr gradients are found in relatively Cr-rich garnets of rocks for which calculated temperatures are below 1050 °C, gradients are well-defined in a Group IV rock with T1300 °C. The variety of Cr gradients in garnets erupted from a range of temperatures indicates that the zonations record diverse histories. Petrologic histories have been investigated by simulated cooling of model rock compositions in the system CaO–MgO–Al2O3–SiO2–Cr2O3. Proportions and compositions of pyroxene and garnet were calculated as functions of P and T. The most common pattern of zonation in Groups III and IV, a decrease of less than 1 wt% Cr2O3 core-to-rim, can be simulated by cooling of less than 200 °C or pressure decreases of less than 1 GPa. The preservation of growth zonation in garnets with calculated temperatures near 1300 °C implies that these garnets grew within a geologically short time before eruption, probably in response to fast cooling after crystallization of a small intrusion nearby. Progress in interpreting garnet zonations in part will depend upon determinations of diffusion rates for Cr. Zonation formed by diffusion within garnet cannot always be distinguished from that formed by growth, but Ca–Cr correlations unlike those typical of peridotite suite garnets may document diffusion.  相似文献   

12.
In a bimineralic eclogite xenolith (sample JJG41) from the Roberts Victor kimberlite, compositional gradients in clinopyroxene are related to garnet exsolution. Two principal reactions involving clinopyroxene and garnet occur: (i) The net-transfer Al2Si-1Mg-1 which is responsible for garnet growth according to the equation 2Di+Al2Si-1Mg-1=Grossular+MgCa-1 (reaction 1). This has created substantial compositional gradients in Al, Si and Mg within clinopyroxene. (ii) The exchange of Fe–Mg between garnet and clinopyroxene (reaction 2). During the stage of garnet growth (reaction 1) the lamellae crystallized sequentially as a result of a temperature decrease from around 1400 to 1200° C. This exsolution growth-stage was under the control of Al diffusion in clinopyroxene and at around 1200° C further growth of garnet lamellae became impeded by the sluggishness of Al diffusion in the clinopyroxene host. However, reaction 2 continued during further cooling down to about 1000° C; this temperature being inferred from the constant Fe–Mg partitioning at clinopyroxene-garnet interfaces for the whole set of lamellae. The initial clinopyroxene in JJG41 was probably formed by crystallization from a melt in Archaean time. The cessation of Fe–Mg exchange between garnet and clinopyroxene at about 1000° C may well predate the eruption of the eclogite in kimberlite at around 100 Ma. Kinetic models of reaction are examined for both reactions. Modelling of reaction 1, involving both diffusion and interface migration, allows several means of estimating the diffusion coefficient of Al in clinopyroxene; the estimates are in the range 10-16-10-20 cm2/s at 1200° C. These estimates bracket the experimentally determined data for Al diffusion in clinopyroxene, and from these experimental data a preferred cooling rate of about 300° C/Ma is obtained for the period of growth of garnet exsolution lamellae. A geospeedometry approach (Lasaga 1983) suitable for a pure-exchange process (reaction 2) is used to estimate the cooling rate in the later stages of the thermal history (after garnet growth); values 4–40° C/Ma are consistent with the shape of the Fe-diffusion gradients in the clinopyroxene. The extensive thermal history recorded by JJG41, including probable melt involvement at ca. 1400° C, demonstrates the complex evolution of rocks within the mantle. Whilst the notion of formation of mantle eclogites from subducted oceanic crust has become fashionable, it is clear that tracing eclogite geochemical and P-T characteristics backwards from their nature at the time of xenolith eruption, through high-temperature mantle events to the characteristics of the original subducted oceanic crust, will be very complex.  相似文献   

13.
Analyses of coexisting garnets, clinopyroxenes and plagioclases from eclogites and high pressure granulitic gneisses in the Kristiansund area within the west Norwegian basal gneiss region are used to establish the P-T conditions for the metamorphic peak for these rocks. Based on the distribution of Fe and Mg between coexisting garnet and clinopyroxene in both eclogite and granulites, equilibrium temperatures are estimated to 750 °±50 ° C. Pressures are derived from the absence of orthopyroxenes in the granulites, and from the assemblage clinopyroxene +plagioclase+quartz present in the gneisses. Equilibrium pressures are estimated to 18.5±3.0 kilobars, and these equilibrium conditions are thus compatible with equilibrium conditions derived for both orthopyroxene-free and most orthopyroxene-bearing country-rock eclogites from adjacent areas.  相似文献   

14.
Static heating during intrusion of the Makhavinekh Lake Pluton (MLP) caused replacement of garnet in the adjacent country rocks (Tasiuyak Gneiss) by coronal assemblages of orthopyroxene + cordierite. Thermometry based on Al solubility in orthopyroxene, applied to relict garnet and neighbouring orthopyroxene, preserves a temperature gradient from 700 to 900 °C at distances between 5750 and 20 m from the intrusion, reaffirming the robustness of this thermometry technique. Intracrystalline and intergranular variations of Al zoning in orthopyroxene are well‐preserved, suggesting that little diffusional modification of Al growth zoning occurred. Maximum Al2O3 in orthopyroxene ranges from c. 2.0 wt% at 5750 m from the intrusion to a maximum of 4.3 wt% at the contact. Individual orthopyroxene grains show decreasing Al from core to rim in samples < 500 m from the intrusion, while those at greater distances show an increase from core to rim. These features are interpreted with the aid of numerical models for conductive heat flow in the aureole. Coronas in samples close to the intrusion grew at high temperatures and along T‐t paths dominated by cooling, so maximum Al content in orthopyroxene in these samples occurs in the cores of grains that grew during the earliest stages of garnet consumption. In contrast, the corona‐forming reactions in rocks further from the contact proceeded along prograde heating paths, so maximum Al content in orthopyroxene occurs in the rims of grains that grew during the final stages of garnet consumption. These results document the ability of Al‐in‐orthopyroxene thermometry to preserve a detailed record of thermal histories in contact‐metamorphic granulites; they suggest that similar intracrystalline and intergranular variations of Al zoning in orthopyroxene in regional granulites may also preserve portions of both the prograde and peak‐T evolution.  相似文献   

15.
Investigation of fluid inclusions in granitic and cale-silicate gneisses from the Adirondack Mountains, New York, has revealed the presence of various types, including: (1) CO2-rich, (2) mixed H2O–CO2±salt and (3) aqueous inclusions with no visible CO2. Many, if not all, of these inclusions were trapped or modified after the peak of granulite facies metamorphism, as shown by textural relations or by the lack of agreement between the composition of the fluids found in some inclusions and the composition of the peak-metamorphic fluid as estimated from mineral equilibria. Many fluid inclusions record conditions attained during retrograde cooling and uplift, with minimum pressures and temperatures of 2 to 3 kbar and 200 to 300°C. The temperatures and pressures derived from the investigation of these inclusions constrain the retrograde P-T path, and the results indicate that a period of cooling with little or no decompression.  相似文献   

16.
《China Geology》2021,4(1):95-110
The garnet amphibolites from the newly identified Wanhe ophiolitic mélange in the Changning-Menglian suture zone (CMSZ) provide a probe to elucidate the evolution of the Triassic Palaeo-Tethys. An integrated petrologic, phase equilibria modeling and geochronological study of the garnet amphibolites, southeast Tibetan Plateau, shows that the garnet amphibolites have a peak mineral assemblage of garnet, glaucophane, lawsonite, chlorite, rutile, phengite and quartz, and a clockwise P-T path with a prograde segment from blueschist-facies to eclogite-facies with a peak-metamorphic P-T conditions of 2000–2100 MPa and 495 –515°C, indicating a cold geothermal gradient of about 240 –260°C/GPa. Theretrograde metamorphic P-T path is characterized by nearly isothermal decompression to lower amphibolite-facies and subsequent cooling to greenschist-facies. The metamorphic zircons have fractionated HREE patterns and significant negative Eu anomalies, and therefore the obtained zircon U-Pb age of 231 ± 1.5 Ma is interpreted to be the timing of the amphibolite facies metamorphism occurrence. The present study probably indicates that the garnet amphibolites in the Wanhe ophiolitic mélange was the retrograded high-pressure eclogite-facies blueschist, instead of the previously proposed eclogites, and the garnet amphibolites recorded the subduction and exhumation process of the Palaeo-Tethys Oceanic crust in the Triassic.©2021 China Geology Editorial Office.  相似文献   

17.
The Jining Group occurs as the eastern segment of the Khondalite Belt, North China Craton and is dominated by a series of granulite facies rocks involving ‘normal’ pelitic granulites recording peak temperatures of ~850 °C and ultrahigh‐temperature (UHT) pelitic granulites recording peak temperatures of 950–1100 °C. The PT paths and ages of these two types of granulites are controversial. Three pelitic granulite samples in the Jining Group comprising two sillimanite–garnet gneiss samples (J1208 and J1210) and one spinel–garnet gneiss sample (J1303) were collected from Zhaojiayao, where ‘normal’ pelitic granulites occur, for determination of their metamorphic evolution and ages. Samples J1208 and J1210 are interpreted to record cooling paths from the Tmax stages with PT conditions respectively of ~870–890 °C/7–8 kbar and >840 °C/>7.5 kbar constrained from the stability fields of the observed mineral assemblages and the isopleths of plagioclase, garnet and biotite compositions in pseudosections. Sample J1303 is interpreted to record pre‐Tmax decompression from the kyanite‐stability fields to the Tmax stage of 950–1020 °C/8–9 kbar and a post‐Tmax cooling path revealed mainly from the stability field of the observed mineral assemblage, the plagioclase zoning and the biotite composition isopleth in pseudosections. The post‐Tmax cooling stage can be divided into suprasolidus and subsolidus stages. The suprasolidus cooling may not result in an equilibrium state at the solidus in a rock. Therefore, different minerals may record different PT conditions along the cooling path; the inferred maximum temperature is commonly higher than the solidus as well as different solidi being recorded for different samples from the same outcrop but experiencing different degrees of melt loss. Plagioclase compositions, especially its zoning in plagioclase‐rich granulites, are predicted to be useful for recording the higher temperature conditions of a granulite's thermal history. The three samples studied seem to record the temperature range covering those of the ‘normal’ and UHT pelitic granulites in the Jining Group, suggesting that UHT conditions may be reached in ‘normal’ granulites without diagnostic UHT indicators. LA‐ICP‐MS zircon U–Pb data provide a continuous trend of concordant 207Pb/206Pb ages from 1.89 to 1.79 Ga for sample J1210, and from 1.94 to 1.80 Ga for sample J1303. These continuous and long age spectrums are interpreted to represent a slow cooling and exhumation process corresponding to the post‐Tmax cooling PT paths recorded by the pelitic granulites, which may have followed the exhumation of deeply buried rocks in a thickened crust region resulted from a collision event at c. 1.95 Ga as suggested by the pre‐Tmax decompression PT path.  相似文献   

18.
Clinopyroxene and orthopyroxene megacrysts with lamellar intergrowths of pyroxenes and garnet rarely survive in pyroxenite layers from the exposed spinel-lherzolite massifs because of the emplacement history into the crust. Such features are remarkably preserved in some thick bands (up to 1 m) from the Freychinède ultramafic body (Ariège, French Pyrenees). These bands display a symmetrical zoning from the edges to the centre due to the concurrent decrease of orthopyroxene/clinopyroxene and spinel/garnet modal ratios. Textural and chemical data suggest that the present pyroxenite parageneses resulted from subsolidus recrystallization of magmatic assemblages composed of Al-rich orthopyroxene and clinopyroxene with minor spinel. These primary assemblages were changed by subsolidus recrystallization connected with an isobaric cooling at upper-mantle depth (45–50 km) from solidus temperature (1250°C) down to steady equilibrium temperature (950° C). The primary Al-rich ortho-and clinopyroxenes behaved differently on cooling. In a first stage, orthopyroxene exsolved concomitant Al-rich clinopyroxene and garnet, whereas clinopyroxene exsolved only Al-rich orthopyroxene. The garnet exsolution in clinopyroxene host is delayed to lower temperatures. This multistage process could account for the contrasting shapes of diffusion gradients adjacent to exsolved garnet, which tend to be flat in host-orthopyroxene and steep in host-clinopyroxene. An independent thermal modelling, together with available Al-diffusion data in clinopyroxene, allows us to define a fast magmatic cooling followed by a two-stage subsolidus cooling (35° C/year-6 from 1250° C to 1050° C and 9° C/year-6 to 900° C). This matches the contrasted exsolution sequences observed in the pyroxene megacrysts.  相似文献   

19.
Ultramafic and mafic granulites from Archaean gneisses in N.W. Scotland (the Scourian) show evidence of two periods of granulite facies mineral growth. The first produced a high pressure clinopyroxene +garnet±plagioclase assemblage at an estimatedP-T of 12–15 kb and 1,000° C. Uplift of the complex caused partial breakdown of the garnet by reaction with clinopyroxene to produce orthopyroxene +plagioclase ±spinel±amphibole symplectites, at an estimatedP-T of 10–14 kb and 800°–900° C. Garnet stability is shown to depend on both whole-rock Fe/Mg ratios and onP-T conditions. The pressures imply crustal thicknesses in the Archaean of least 35–45 km.  相似文献   

20.
The sapphirine granulites from G. Madugula, Eastern Ghats preserve a variety of mineral textures and reactions. Corona and reaction textures are used in conjunction with mineral compositions to construct a sequence of metamorphic reactions describing the mineralogical evolution of sapphirine granulites. An early stage is characterized by the development of sapphirine + quartz, spinel + quartz in textural equilibrium, and possible relicts after osumilite during peak metamorphic conditions. Sapphirine/spinel crystals were later detached from quartz in the form of mineral coronas. During a subsequent sapphirine-cordierite stage, several cordierite forming reactions reflect decreasingP-T conditions. Finally during the late stage, a few samples show evidence of retrogressive hydration. Sapphirine is rather iron-rich (12.8 wt%) and the Mg number in the analysed minerals varies in the order: cordierite > phlogopite > sapphirine > orthopyroxene > spinel > garnet.P-T conditions of metamorphism have been constrained through the application of geothermobarometry and thermodynamically calibrated MAS equilibria.P-T vectors from granulite facies rocks in the G. Madugula area indicate that the rocks experienced substantial decompression (up to 3 kbar) and moderate cooling (150–200°C) subsequent to peak conditions of metamorphism (8.4 kbar, > 900°C). The decompressionalP-T history of sapphirine granulites interpreted from textural features and thermobarometric estimates suggest that they may have eventually resulted from exhumation of thickened crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号