首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
-In this paper, an analytical solution in the outer region of finite water depth is derived for the second-order diffraction potential, which gives a clear physical meaning of the wave transmission and reflection characteristics in the far field. A numerical method-simple Green's function technique-for calculating the second-order diffraction potential in the inner region is also described. Numerical results are provided for the second-order wave forces on a semi-submerged cylinder. It is found that the contribution of second-order diffraction potential to second-order wave forces is important. The effect of water depth and submerged depth on the wave force is also discussed.  相似文献   

2.
Theoretical results for second-order wave run-up around a large diameter vertical circular cylinder are compared to results of 22 laboratory experiments conducted in regular nonlinear waves. In general, the second-order theory explains a significant portion of the nonlinear wave run-up distribution measured at all angles around the cylinder. At the front of the cylinder, for example, measured maximum run-up exceeds linear theory by 44% on average but exceeds the nonlinear theory by only 11% on average. In some cases, both measured run-up and the second-order theory exceed the linear prediction by more than 50%. Similar results are found at the rear of the cylinder where the second-order theory predicts a large increase in wave amplitude for cases where the linear diffraction theory predicts little or no increase. Overall, the nonlinear diffraction theory is found to be valid for the same relative depth and wave steepness conditions applicable to Stokes second-order plane-wave theory. In the last section of the paper, design curves are presented for estimating the maximum second-order wave run-up for a wide range of conditions in terms of the relative depth, relative cylinder size, and wave steepness.  相似文献   

3.
By integration of the second-order fluid pressure over the instantaneous wetted surface, the generalized first- and second-order fluid forces used in nonlinear hydroelastic analysis are obtained. The expressions for coefficients of the generalized first- and second-order hydrodynamic forces in irregular waves are also given. The coefficients of the restoring forces of a mooring system acting on a flexible floating body are presented. The linear and nonlinear three-dimensional hydroelastic equations of motion of a moored floating body in frequency domain are established. These equations include the second-order forces, induced by the rigid body rotations of large amplitudes in high waves, the variation of the instantaneous wetted surface and the coupling of the first order wave potentials. The first-order and second-order principal coordinates of the hydrelastic vibration of a moored floating body are calculated. The frequency characteristics of the principal coordinates are discussed. The numerical results indicate that the rigid resonance and the coupling resonance of a moored floating body can occur in low frequency domain while the flexible resonance can occur in high frequency domain. The hydroelastic responses of a moored box-type barge are also given in this paper. The effects of the second-order forces on the modes are investigated in detail.  相似文献   

4.
Second-order springing on an elastic body with forward speed is analyzed by numerical simulations. The boundary-value problem for the velocity potential is solved by means of the direct time-domain higher-order boundary element method (HOBEM). The free-surface boundary condition in the boundary-value problem is approximated on the mean surface up to second order by use of perturbation and Taylor-series expansion methods. The body boundary condition for an elastic body is derived with various quantities which are redefined in the generalized mode. These variables such as mode shape, normal vector, etc. are obtained by using directional derivative and continuum mechanics, and the same mathematical expressions are used to obtain several second-order generalized forces. To validate the numerical results, the second-order hydrodynamic force on the bottom-mounted rigid/elastic cylinders without forward speed is compared with other semi-analytic results. The property of second-order forces on an elastic ship is studied by changing the flexural rigidity and forward speed with elastic response. It is confirmed that the second-order velocity potential is important for a body with forward speed and investigation should be made more on numerical methods for accurate computation of the second-order velocity-potential force with forward speed.  相似文献   

5.
In the numerical studies of a real tide M4 resonance system, the Xiangshan Port which is a partially-closed bay, Dong et al. [1999. Acta Oceanologica Sinica, 21 (3): 1-6] found the interesting phenomenon that the advection plays an important role in inhibiting the growth of the amplitude of the tidal second-order resonance response (M4). This result is contrary to the general traditional ideas for a non-resonance system. How this phenomenon is interpreted and what internal mechanism is behind the phenomenon are the main focuses of this study. The followings are examined: (1) the dynamic features of a second-order resonance system of tide; (2) the dominating factors on the second-order resonance responses; (3) the effects of both the friction and the advection on the second-order resonance responses; and (4) their roles in dominating the second-order resonance response and internal mechanisms by using the analytical methods. The respective results show that: (1) Both the bottom friction and the advection play significant roles in dominating the magnitude of the amplitude of the second-order resonance responses; (2) the effect of the friction on the second-order resonance response depends on the distribution ratio of the work-done of the system to friction force exhausted into between the damping of the first-order system and the inner excitation of the second-order system; (3) the advection plays a positive role in increasing the amplitude of the second-order non-resonance response in the second order non-resonance of tide; (4) in a second-order resonance system of tide, the effect of the advection may be either to increase or to decrease the amplitudes of the second-order resonance responses of tide, which depends on the distribution ratio mentioned above.  相似文献   

6.
冰区四季通用灯浮标是一种为满足北方冬季冰冻港口一年四季的助航服务需求研制的新型灯浮标,二阶波浪力对其漂浮姿态和漂移运动有较大影响。文中研究了浮标受到的二阶波浪力的数值计算方法,计算了不同流速下罐形和锥形灯浮标的二阶波浪力。研究结果显示,罐形和锥形灯浮标受到的一阶波浪力相差不大,罐形的二阶波浪力明显小于锥形,具有一定的外形优势。  相似文献   

7.
A second-order potential solution is presented for the diffraction of a nonlinear progressive wave in finite-depth water, incident on a fixed circular dock. The usual perturbation analysis is used to produce first- and second-order subproblems. The mathematical method is based on the assumption that inner and outer solutions exist and these are matched by the requirements of continuity for mass flux and pressure between adjacent regions. It is shown that the solutions for the second-order problem can be derived in the same manner as in the first-order theory.  相似文献   

8.
Non-linear loads on a fixed body due to waves and a current are investigated. Potential theory is used to describe the flow, and a three-dimensional (3D) boundary element method (BEM), combined with a time-stepping procedure, is used to solve the problem. The exact free-surface boundary conditions are expanded about the still-water level by Taylor series so that the solution is evaluated on a time-invariant geometry. A formulation correct to second order in the wave steepness and to first order in the current speed is used. Numerical results are obtained for the first-order and the second-order oscillatory forces and for the second-order mean force on a fixed vertical circular cylinder in waves and a current. The second-order oscillatory forces on the body in waves and current are new results, while the remaining force components are verified by comparison with established numerical and analytical models. It is shown that the current can have a significant influence on the forces, and especially on the amplitude of the second-order oscillatory component.  相似文献   

9.
Several detection statistics are compared in the frequency domain based on the asymptotic probability of detection (APD) criterion. They include second-order, fourth-order, normalized fourth-order, and kurtosis estimates. The results show that for randomly occurring signals which can be characterized as non-Gaussian, the fourth-order, normalized fourth-order, and kurtosis estimates can have higher asymptotic probability of detection levels compared with second-order estimates. But only for the normalized fourth-order and kurtosis estimates do the results seem significant. Moreover, if a second-order estimate of the noise is available to normalize a fourth-order estimate of signal and noise, the resultant normalized fourth-order estimate has higher asymptotic probability of detection levels even for Gaussian signals. This result holds only when there is a significant positive covariance between the numerator and the normalizing noise sample in the denominator. On the other hand, if an independent noise sample is used to normalize a second-order or fourth-order estimate, the overall performance based on the asymptotic probability of detection will be degraded compared with the unnormalized second-order or fourth-order estimates, respectively.  相似文献   

10.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

11.
The paper provides a detailed analysis for the second-order diffraction of monochromatic waves. For the second-order potential on the free surface, the paper proposed a forward prediction method for computing the integration on the free surface. By this method we only need to run the infinity integration on the free surface directly for a few points; a one-step quadrature can then be applied successively outward from the body for potentials at other points. For wave diffraction from a body of revolution with a vertical axis, the paper derives a new integral equation, which can cancel the leading singularity in the derivative of ring Green's functions automatically. To obtain accurate results, different approaches are also used to deal with singularities in the ring Green's functions in the integration on both the body surface and free surface. The method has been implemented for bodies of revolution with vertical axes, but the theory is also available for arbitrary bodies.A numerical examination is made to validate the numerical code by comparing the second-order forces and moments on uniform and truncated cylinders and second-order diffraction potentials on the free surface with some published results. The comparison shows that the present results are in good agreement with those published. The method is also used to compute the second-order wave elevation around uniform and truncated cylinders.  相似文献   

12.
The present study considers the prediction of extreme values of the second-order hydrodynamic parameters related to offshore structures in waves, where the application of Gaussian distribution is not valid. Particularly, this study focuses on a characteristic function approach in the frequency domain to estimate the probability distribution of the second-order quantities, and the results are compared with direct simulations in the time domain. The stochastic behaviors of the second-order hydrodynamic quantities are investigated with the characteristic function approach, which involves eigenvalue analyses of Hermitian kernels constructed with quadratic transfer functions. Three different second-order responses are considered: the springing responses of TLP tendons representative of the sum-frequency problem, the slow-drift motions of a semi-submersible platform moored in waves as a representative of the difference-frequency problem, and the wave run-up around a vertical column for regular and irregular waves. The applicability of the present approach in predicting extreme values is assessed by comparing the results with the values obtained from time-domain signals.  相似文献   

13.
可渗透结构具有使波浪作用减弱的效应,而海水的层化及水波的非线性使结构的波绕射产生多层复杂机制。将可渗透结构应用于复杂海况条件中,海水的层化性、波浪的非线性及结构的透空性构成了波绕射的一个十分复杂的数学问题。该问题存在理论研究的必要性,而文章则着重探讨其数学分析的可能性。通过引入二层海的层化海模式及Stokes二阶波的非线性波模式,给出了二阶多色波对透空结构的波绕射的定解问题提法,提出了复合形式的二阶多色波辐射条件式及可渗透结构的二阶物面条件式,应用特征函数解法与积分法推导了多色波对结构绕射的一阶势解与二阶作用的耦合积分解式,并讨论了解式所涉及无穷积分的算法。  相似文献   

14.
This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties, submitted for publication) using 2D irregular waves. This work provides a second-order dispersive correction for the physical wavemaker signal which improves the nonlinear transfer of information between the numerical and physical models compared to the first-order method of Zhang et al. (2007). The important nonlinear parameters and numerical performance were theoretically investigated in Part I. In the present Part II, careful experimental validation is carried out using a sequence of progressively more complex analytical and numerical target waves. The results demonstrate clearly that improved performance is achieved by using the second-order correction. When controlling with a second-order coupling signal, two key points are notable: (i) The higher harmonics underlying the numerical waves are accurately captured and transferred into the physical model. (ii) The second-order behavior leads to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bi-chromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both these aspects are verified over a broad range of wave frequencies and shown to be extensively applicable to physical wave tanks.  相似文献   

15.
Linear and second-order surface wave interactions with floating and bottom-mounted bodies of realistic geometry are simulated in the time domain by a three-dimensional Rankine panel method. The fundamental stability analysis governing the propagation of transient wave disturbances on a panel mesh distributed on the free surface is carried out from first principles. The radiation condition is enforced by a dissipative beach selected to coincide with an outer annulus of panels. The fundamental physics governing the wave energy absorption is presented and the beach attributes are selected and validated for the linear and second-order problems. Computations are presented of the linear and sum-frequency second-order forces on a single and multiple truncated circular cylinders, and very good agreement is found with benchmark computations. The accuracy and efficiency of this method render it a promising candidate for the study of complex nonlinear wave induced phenomena upon offshore platforms, like springing and ringing.  相似文献   

16.
Model simplification for AUV pitch-axis control design   总被引:1,自引:0,他引:1  
Although the use of low-order equivalent models is common and extensively studied for control of aircraft systems, similar analysis has not been performed for submersible systems. Toward an improved understanding of the utility of low-order equivalent models for submersible systems, we examine control design for pitch-axis motion of an autonomous underwater vehicle (AUV). Derived from first principles, the pitch-axis motion of a streamlined AUV is described by third-order dynamics. However, second-order approximate models are common for system identification and control design. In this work, we provide theoretical justification for both the use of and limitations of a second-order model, and we verify our results in practice via a series of case studies. We conclude that a second-order pitch-axis model should often be sufficient for system identification and control design.  相似文献   

17.
C.Z. Wang  G.X. Wu 《Ocean Engineering》2008,35(8-9):717-726
A time-domain method is employed to analyse the resonant oscillations of the liquid confined within the two floating bodies. The velocity potentials at each time step are obtained through a finite-element method (FEM) with quadratic shape functions. The matrix equation of the FEM is solved through an iteration. The radiation condition is satisfied through a combination of the damping zone method and the Sommerfeld–Orlanski equation. A detailed analysis is made for two rectangular floating cylinders undergoing forced oscillation. The first-order potential reveals the resonant behaviour of the wave motion at certain frequencies ωi, which is similar to sloshing in a tank. More interestingly, the second-order theory further reveals that when the oscillation frequency is at ωi/2 or half of the resonant frequency, no first-order resonance is observed as expected, but the second-order resonant motion becomes evident, which does not seem to have been extensively investigated so far. Detailed results for two rectangular cylinders are provided to show some insights into the resonant effect due to the interaction between the bodies. The first- and second-order resonant phenomena have been observed and the result has shown that the second-order components have significant influence on the wave and force in some cases, especially at the second-order resonance.  相似文献   

18.
A second-order solution of waves passing porous structures   总被引:1,自引:0,他引:1  
Only linear theoretical analyses of wave interaction with porous structures exist, mainly due to both the complexities of flows inside the porous medium, and the mathematical inhomogeneous boundary-value problem. Since the hydrodynamic flow mechanism is non-linear a non-linear analysis can better describe the characteristic nature of the problem. In this paper, a generalized potential theory is used to describe both the internal and external water flows. An implicit non-linear model is used to describe flow mechanism inside the porous medium. The perturbation method is used to solve the problem analytically up to the second order. The second-order solution is decomposed into time-dependent and time-independent parts. And, correspondingly, the inhomogeneous boundary-value problems are solved analytically. In the analysis, the second-order characteristics of the problem, including the dispersion equation, wave numbers and friction coefficient, as well as wave reflection and transmission, are investigated in detail. It is shown that the mode swapping of the second-order wave numbers only occurs among the evanescent modes. The second-order friction effects become important in shallow-water cases. The comparison of the results of present theory with experimental results shows that the second-order solution is good correction to the linear theory.  相似文献   

19.
An iterative frequency domain method of analysis is presented for determining the response behaviour of Guyed Offshore Towers to low-frequency, second-order wave drift forces generated in a random sea environment. For the response analysis, the tower is idealized as a shear beam with a rotational spring at the bottom support. The guylines are replaced by a non-linear spring. The second-order drift force is considered to be proportional to the square of the wave elevation and is simulated using a drift force coefficient and the time history of a slowly varying wave envelope in random sea. The responses due to drift forces are obtained in frequency domain by incorporating the non-linearities produced due to non-linear guy lines. An example problem is solved under different random sea states to compare the response behaviour of the tower obtained by the second-order wave force, the first-order wave force and a combination of the two.  相似文献   

20.
Diffraction of a directionally spread wave group by a cylinder   总被引:2,自引:0,他引:2  
The problem of diffraction of a directionally spread focused wave group by a bottom-seated circular cylinder is considered from the viewpoint of second-order perturbation theory. After applying the time Fourier transform and separation of vertical variable the resulting two-dimensional non-homogeneous Helmholtz equations are solved numerically using finite differences. The detailed formulation of the second-order radiation condition is presented. Numerical solutions of the problem are obtained for JONSWAP amplitude spectra for the incoming wave group with various types of directional spreading. The results are compared with the corresponding results for a unidirectional wave group of the same amplitude spectrum. Finally we discuss the applicability of the averaged spreading angle concept for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号