首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Nankai Trough, Japan, is a subduction zone characterized by the recurrence of disastrous earthquakes and tsunamis. Slow earthquakes and associated tremor also occur intermittently and locally in the Nankai Trough and the causal relationship between slow earthquakes and large earthquakes is important to understanding subduction zone dynamics. The Nankai Trough off Muroto, Shikoku Island, near the southeast margin of the rupture segment of the 1946 Nankai earthquake, is one of three regions where slow earthquakes and tremor cluster in the Nankai Trough. On the Philippine Sea plate, the rifting of the central domain of the Shikoku Basin was aborted at ~15 Ma and underthrust the Nankai forearc off Muroto. Here, the Tosa-Bae seamount and other high-relief features, which are northern extension of the Kinan Seamount chain, have collided with and indented the forearc wedge. In this study, we analyzed seismic reflection profiles around the deformation front of accretionary wedge and stratigraphically correlated them to drilling sites off Muroto. Our results show that the previously aborted horst-and-graben structures, which were formed around the spreading center of the Shikoku Basin at ~15 Ma, were rejuvenated locally at ~6 Ma and more regionally at ~3.3 Ma and have remained active since. The reactivated normal faulting has enhanced seafloor roughness and appears to affect the locations of slow earthquakes and tremors. Rejuvenated normal faulting is not limited to areas near the Nankai Trough, and extends more than 200 km into the Shikoku Basin to the south. This extension might be due to extensional forces applied to the Philippine Sea plate, which appear to be driven by slab-pull in the Ryukyu and Philippine trenches along the western margin of the Philippine Sea plate.  相似文献   

2.
The Dogo hot spring, situated in Matsuyama City, Ehime Prefecture, Japan, is one of the oldest and most famous hot springs in Japan. The groundwater level or discharge at the spring decreased four times during the past eight or nine Nankai earthquakes. These are large interplate earthquakes that have occurred repeatedly in the western part of the Nankai Trough at intervals of 100–200 years since A.D. 684. To clarify the mechanism of these earthquake-related changes in the water level at the spring, we analyzed groundwater-level data recorded at the spring immediately after the 1946 Nankai earthquake and over the period from 1985 to 2006. We detected the other nine postseismic increases in groundwater level and no decreases, except for a large decrease of 11.4 m related to the 1946 Nankai earthquake. The increases were probably caused by ground-shaking, while the decrease was caused by a change in coseismic volumetric strain. These results lead to the following explanation of the recorded earthquake-related changes in the groundwater level at the Dogo hot spring. Both coseismic changes in volumetric strain and ground-shaking can lead to postseismic changes in groundwater pressure. The increase in groundwater pressure arising from ground-shaking is generally greater than the change in pressure associated with changes in coseismic volumetric strain; however, at the time of the Nankai earthquakes, the spring experiences a large increase in coseismic volumetric strain, leading to a considerably larger decrease in the groundwater level than the increase associated with ground-shaking. Therefore, the groundwater level at the Dogo hot spring usually increases at times of relatively large earthquakes, although the groundwater level or discharge decreases in the case of the Nankai earthquakes.  相似文献   

3.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

4.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

5.
Field investigations in 1999 confirmed that the tsunami that struck the Aitape coast of Papua New Guinea on 17 July, 1998 caused damage at points as far as 230 km to the west-northwest, particularly at locations where the coast is indented. Eyewitnesses saw the sea withdraw (in most cases), then surge to levels around 2 m higher than normal in a series of three waves. In some cases the time of arrival of the waves is known approximately by reference to the onset of darkness and to felt earthquakes. Seiche waves followed in some bays, notably in Yos Sudarso Bay, Indonesia, where waves persisted for 3–5 days. Damage was caused by the backwash from the waves. Bodies presumed to be those of Aitape victims were seen floating at sea off Jayapura five days after the tsunami. We record the recollections of people in the Yos Sudarso Bay area who experienced a number of tsunamis in the past 60 years; people that we interviewed on the Papua New Guinea side of the border recollected few or none.  相似文献   

6.
A typical model of the source of a tsunami (“macroseismic source”) is suggested for use in approximate estimation of maximum tsunami height using straightforward numerical modeling. In this paper the model is tested using three actual events: the 1952 North Kuril Is., 1971 Moneron, and 1994 Shikotan earthquakes, which excited considerable tsunamis at Russia’s Far East coasts. Comparison of the maximum tsunami runup values as obtained in numerical experiments with observations of actual tsunamis showed that the numerical model proposed here is suitable for crude estimation of tsunami runup and tsunami waiting times for coastal population centers in the near zone of a tsunami source.  相似文献   

7.
There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05–0.4 Hz. The attenuation characteristics (Q) in the finite difference simulations were assumed to be proportional to frequency (f) and S-wave velocity (V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.  相似文献   

8.
Operational prediction of near-field tsunamis in all existing Tsunami Warning Systems (TWSs) is based on fast determination of the position and size of submarine earthquakes. Exceedance of earthquake magnitude above some established threshold value, which can vary over different tsunamigenic zones, results in issuing a warning signal. Usually, a warning message has several (from 2 to 5) grades reflecting the degree of tsunami danger and sometimes contains expected wave heights at the coast. Current operational methodology is based on two main assumptions: (1) submarine earthquakes above some threshold magnitude can generate dangerous tsunamis and (2) the height of a resultant tsunami is, in general, proportional to the earthquake magnitude. While both assumptions are physically reasonable and generally correct, statistics of issued warnings are far from being satisfactory. For the last 55 years, up to 75% of warnings for regional tsunamis have turned out to be false, while each TWS has had at least a few cases of missing dangerous tsunamis. This paper presents the results of investigating the actual dependence of tsunami intensity on earthquake magnitude as it can be retrieved from historical observations and discusses the degree of correspondence of the above assumptions to real observations. Tsunami intensity, based on the Soloviev-Imamura scale is used as a measure of tsunami “size”. Its correlation with the M s and M w magnitudes is investigated based on historical data available for the instrumental period of observations (from 1900 to present).  相似文献   

9.
Where should we take cores for palaeotsunami research? It is generally considered that local depressions with low energy environments such as wetlands are one of the best places. However, it is also recognized that the presence or absence of palaeotsunami deposits (and their relative thickness) is highly dependent upon subsoil microtopography. In the beach ridge system of Ishinomaki Plain, Japan, several palaeotsunami deposits linked to past Japan Trench earthquakes have been reported. However, the number of palaeotsunami deposits reported at individual sites varies considerably. This study used ground penetrating radar (GPR) combined with geological evidence to better understand the relationship between palaeotopography and palaeotsunami deposit characteristics. The subsurface topography of the ~3000–4000 bp beach ridge was reconstructed using GPR data coupled with core surveys of the underlying sediments. We noted that the number (and thickness) of the palaeotsunami deposits inferred from the cores was controlled by the palaeotopography. Namely, a larger number of events and thicker palaeotsunami deposits were observed in depressions in the subsurface microtopography. We noted a total of three palaeotsunami deposits dated to between 1700 and 3000 cal bp , but they were only observed together in 11% of the core sites. This result is important for tsunami risk assessments that use the sedimentary evidence of past events because we may well be underestimating the number of tsunamis that have occurred. We suggest that GPR is an efficient and invaluable tool to help researchers identify the most appropriate places to carry out geological fieldwork in order to provide a more comprehensive understanding of past tsunami activity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   

11.
Strong ground motions recorded in central Tokyo during the 1944 Tonankai Mw8.1 earthquake occurring in the Nankai Trough demonstrate significant developments of very large (>10 cm) and prolonged (>10 min) shaking of long-period (T > 10–12 s) ground motions in the basin of Tokyo located over 400 km from the epicenter. In order to understand the process by which such long-period ground motions developed in central Tokyo and to mitigate possible future disasters arising from large earthquakes in the Nankai Trough, we analyzed waveform data from a dense nation wide strong-motion network (K-NET and KiK-net) deployed across Japan for the recent SE Off-Kii Peninsula (Mw 7.4) earthquake of 5 September 2004 that occurred in the Nankai Trough. The observational data and a corresponding computer simulation for the earthquake clearly demonstrate that such long-period ground motion is primarily developed as the wave propagating along the Nankai Trough due to the amplification and directional guidance of long-period surface waves within a thick sedimentary layer overlaid upon the shallowly descending Philippine Sea Plate below the Japanese Island. Then the significant resonance of the seismic waves within the thick cover of sedimentary rocks of the Kanto Basin developed large and prolonged long-period motions in the center of Tokyo. The simulation results and observed seismograms are in good agreement in terms of the main features of the long-period ground motions. Accordingly, we consider that the simulation model is capable of predicting the long-period ground motions that are expected to occur during future Nankai Trough M 8 earthquakes.  相似文献   

12.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

13.
Japan’s 2011 Tohoku-Oki earthquake and the accompanying tsunami have reminded us of the potential tsunami hazards from the Manila and Ryukyu trenches to the South China and East China Seas. Statistics of historical seismic records from nearly the last 4 decades have shown that major earthquakes do not necessarily agree with the local Gutenberg-Richter relationship. The probability of a mega-earthquake may be higher than we have previously estimated. Furthermore, we noted that the percentages of tsunami-associated earthquakes are much higher in major events, and the earthquakes with magnitudes equal to or greater than 8.8 have all triggered tsunamis in the past approximately 100 years. We will emphasize the importance of a thorough study of possible tsunami scenarios for hazard mitigation. We focus on several hypothetical earthquake-induced tsunamis caused by M w 8.8 events along the Manila and Ryukyu trenches. We carried out numerical simulations based on shallow-water equations (SWE) to predict the tsunami dynamics in the South China and East China Seas. By analyzing the computed results we found that the height of the potential surge in China’s coastal area caused by earthquake-induced tsunamis may reach a couple of meters high. Our preliminary results show that tsunamis generated in the Manila and Ryukyu trenches could pose a significant threat to Chinese coastal cities such as Shanghai, Hong Kong and Macao. However, we did not find the highest tsunami wave at Taiwan, partially because it lies right on the extension of an assumed fault line. Furthermore, we put forward a multi-scale model with higher resolution, which enabled us to investigate the edge waves diffracted around Taiwan Island with a closer view.  相似文献   

14.
We develop stochastic approaches to determine the potential for tsunami generation from earthquakes by combining two interrelated time series, one for the earthquake events, and another for the tsunami events. Conditional probabilities for the occurrence of tsunamis as a function of time are calculated by assuming that the inter-arrival times of the past events are lognormally distributed and by taking into account the time of occurrence of the last event in the time series. An alternative approach is based on the total probabilitiy theorem. Then, the probability for the tsunami occurrence equals the product of the ratio, r (= tsunami generating earthquakes/total number of earthquakes) by the conditional probability for the occurrence of the next earthquake in the zone. The probabilities obtained by the total probability theorem are bounded upwards by the ratio r and, therefore, they are not comparable with the conditional probabilities. The two methods were successfully tested in three characteristic seismic zones of the Pacific Ocean: South America, Kuril-Kamchatka and Japan. For time intervals of about 20 years and over the probabilities exceed 0.50 in the three zones. It has been found that the results depend on the approach applied. In fact, the conditional probabilities of tsunami occurrence in Japan are slightly higher than in the South America region and in Kuril-Kamchatka they are clearly lower than in South America. Probabilities calculated by the total probability theorem are systematically higher in South America than in Japan while in Kuril-Kamchatka they are significantly lower than in Japan. The stochastic techniques tested in this paper are promising for the tsunami potential assessment in other tsunamigenic regions of the world.  相似文献   

15.
日本南海海槽天然气水合物研究现状   总被引:8,自引:3,他引:8  
本文介绍日本在其周围海域特别是南海海槽的海洋天然气水合物研究工作,首先介绍其研究简史,研究计划,研究队伍及早期研究成果,其次,介绍了西南海海槽天然气水合物的勘探、研究状况,然后,介绍了五年计划实施的东南海海槽地球物理勘探、钻探状况,最后指出,南海海槽的一些新资料深入的综合研究无疑会给世界水合物研究增添新的内容。  相似文献   

16.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

17.
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450 years ago produced a wave that affected areas 17 m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600 yr BP, and affected areas more than 7 m above high tide at distances of 80 km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600 yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600 yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska.  相似文献   

18.
渤海海域历史上发生过地震诱发海啸吗?   总被引:2,自引:0,他引:2       下载免费PDF全文
历史文献中有许多关于渤海"海溢"的记录,但"海溢"是否就是现代意义上的海啸还存在疑问,而且渤海海域基本不存在发生重大海啸的海沟型地震构造背景,因此,渤海地区是否发生过海啸的争论从未停止.本文在分析历史地震和古籍资料的基础上,通过数值模拟分析历史地震引发海啸的可能性,结合对渤海沿岸海啸堆积物的地质调查,认为渤海海域历史上基本没有发生过破坏性海啸事件,即使存在过海啸,到岸浪高也不会高于0.5 m,而且仅限于东营—潍坊一带.  相似文献   

19.
The 2006 western Java tsunami deposited a discontinuous sheet of sand up to 20 cm thick, flooded coastal southern Java to a depth of at least 8 m and inundated up to 1 km inland. In most places the primarily heavy mineral sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet probably record the passage of up to two individual waves, a point noted in eyewitness accounts. We studied the 2006 tsunami deposits in detail along a flow parallel transect about 750 m long, 15 km east of Cilacap. The tsunami deposit first becomes discernable from the underlying sediment 70 m from the shoreline. From 75 to 300 m inland the deposit has been laid down in rice paddies, and maintains a thickness of 10–20 cm. Landward of 300 m the deposit thins dramatically, reaching 1 mm by 450 m inland. From 450 m to the edge of deposition (around 700 m inland) the deposit remains <1 mm thick. Deposition generally attended inundation—along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. The thicker part of the deposit contains primarily sand indistinguishable from that found on the beach 3 weeks after the event, but after about 450 m (and roughly coinciding with the decrease in thickness) the tsunami sediment shifts to become more like the underlying paddy soil than the beach sand. Grain sizes within the deposit tend to fine upward and landward, although overall upward fining takes place in two discrete pulses, with an initial section of inverse grading followed by a section of normal grading. The two inversely graded sections are also density graded, with denser grains at the base, and less dense grains at the top. The two normally graded sections show no trends in density. The inversely graded sections show high density sediment to the base and become less dense upward and represents traction carpet flows at the base of the tsunami. These are suggestive of high shear rates in the flow. Because of the grain sorting in the traction carpet, the landward-fining trends usually seen in tsunami deposits are masked, although lateral changes of mean sediment grain size along the transect do show overall landward fining, with more variation as the deposit tapers off. The deposit is also thicker in the more seaward portions than would be produced by tsunamis lacking traction carpets.  相似文献   

20.
The historical tsunamis in the Marmara Seawere mainly caused by earthquakes andneeded to be documented. Following 1999Izmit earthquake occurred at the EasternMarmara region, a complete inventory ofactive faults in the Marmara Sea regionbecame much more stressed. To the west, thelatest event is 09.08.1912arköy-Mürefte Earthquake. Itoccurred on the active Ganos Fault zone andwas one of the largest earthquakes in theBalkans. The eastern termination of theassociated faulting is in the deep WestMarmara Trough, westernmost of thesuccessive basins forming the Marmara Sea.On the basis of recent multibeam bathymetryand seismic reflection data, estimatedtotal length of the surface rupture isabout 56 km. The historical data reviewedfrom library and archive documents,geological field surveys and offshoregeophysical investigations have shown thatthe 1912 earthquake produced a tsunami. Inaddition a seabed dislocation, the sourceof 1912 tsunami can also be assigned to thesediment slumps appearing in the form ofechelon landslide prisms along the southernslopes of the West Marmara Trough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号