首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

2.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

3.
Evapotranspiration (LE) is an important factor for monitoring crops, water requirements, and water consumption at local and regional scale. In this paper, we applied the semi-empirical model to estimate the daily latent heat flux (LEd = Rnd + A  B(Ts  Ta)). LEd has been estimated using satellite images (Thematic Mapper sensor) and a local dataset (incoming and outgoing short- and long-wave radiation) measured during three years. We first estimated the daily net Radiation (Rnd) from a linear equation derived from the instantaneous net Radiation (Rnd = CRni + D). Subsequently, coefficients A and B have been estimated for two different cover vegetations (pasture and soybean). For each vegetation cover, an error analysis combining Rnd, A, B, and surface and air temperatures has been calculated. Results showed that Rnd had good performance (nonbias and low RMSE). LEd errors for pasture and soybean were ±28 W m−2 and ±40 W m−2 respectively.  相似文献   

4.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

5.
Equivalent dose (De) values were measured by using medium aliquots of different grain size quartz fractions of five lakeshore sediments from the arid region of north China. There are two different relationships between De values and grain sizes of these five samples. The first relationship is that the De values obtained from various grain sizes are in agreement within 1 delta errors. The second relationship is that De values are similar to each other for fractions between 125 and 300 μm, while the De value of the 63–90 μm fraction is 40~55% smaller than others. For example, the De values obtained for sample #3 are 20.15 ± 1.19 Gy, 19.80 ± 0.83 Gy and 20.93 ± 1.06 Gy for fractions of 90–125, 125–150 and 250–300 μm respectively, but are 10.79 ± 0.84 Gy for the 63–90 μm fraction. The second relationship can't be interpreted by previous studies of both dosimetry and heterogeneous bleaching. It is deduced for sample #2, #3 and #6 that fine particles (<90 μm) intruded after the dominant sedimentation. Comparison of OSL ages from different grain size fractions of sample #2 with a radiocarbon age from the same lithologic layer supports that fractions coarser than 125 μm yield more reliable burial ages, while the fraction finer than 90 μm yields underestimated ages for some lakeshore sediments from this arid region.  相似文献   

6.
Three synthetic samples of six-line ferrihydrite (Fh5.4, Fh4.1, and Fh3.0), with average particle sizes of 5.4, 4.1, and 3.0 nm (respectively), have been studied by low-temperature magnetic techniques, Mössbauer spectroscopy, transmission electron microscopy, and X-ray absorption spectroscopy. Magnetic data indicate that these nanoparticles are not only antiferromagnetic, but that they also possess a ferromagnetic-like moment due to the presence of uncompensated spins. Both magnetic and Mössbauer data indicate that nanoparticles of six-line ferrihydrite are superparamagnetic at room temperature, with a low-temperature transition between blocked and unblocked magnetic states dependent on average particle size. In particular, low-field magnetic susceptibility data display a peak in amplitude at 45 K (Fh3.0), 55 K (Fh4.1), and 80 K (Fh5.4). Low-temperature induced magnetization data, acquired in magnetic fields up to 5 T, also display clearly a superparamagnetic behavior. These data were tentatively modeled as the sum of two contributions: a linear term due to the antiferromagnetic susceptibility and a nonlinear term due to the uncompensated spins. Model estimates of the magnetization carried by the uncompensated spins (Mnc) show a decrease in Mnc with increasing temperature. Extrapolation of Mnc values down to zero provided an estimate of the Néel temperature for six-line ferrihydrite on the order of 500 K.  相似文献   

7.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

8.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

9.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

10.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   

11.
《Marine pollution bulletin》2009,58(6-12):280-286
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

12.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

13.
《Marine pollution bulletin》2012,64(5-12):201-208
Flow cytometry was used to examine immune responses in haemocytes of the green-lipped mussel Perna viridis under six combinations of oxygen level (1.5 mg O2 l−1, 6.0 mg O2 l−1) and temperature (20 °C, 25 °C and 30 °C) at 24 h, 48 h, 96 h and 168 h. The mussels were then transferred to normoxic condition (6.0 mg O2 l−1) at 20 °C for further 24 h to study their recovery from the combined hypoxic and temperature stress. Esterase (Est), reactive oxygen species (ROS), lysosome content (Lyso) and phagocytosis (Pha) were reduced at high temperatures, whereas hypoxia resulted in higher haemocyte mortality (HM) and reduced phagocytosis. For HM and Pha, changes were observed after being exposed to the stresses for 96 h, whereas only a 24 h period was required for ROS and Lyso, and a 48 h one for Est. Recovery from the stresses was observed for HM and Pha but not other immune responses.  相似文献   

14.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

15.
Single-crystal elasticity of stishovite was examined using a new experimental technique and an empirical macroscopic model. Employing high-frequency resonant ultrasound spectroscopy, single-crystal elastic constants of stishovite were determined: C11 = 443(3), C33 = 781(4), C12 = 193(2), C23 = 199(2), C44 = 256(2), and C33 = 316(2) GPa. The frequency range of the resonant ultrasound spectroscopy techniques was 6–20 MHz, which is much lower than the ~10 GHz range of the Brillouin scattering technique. Of the elastic constants, the shear elastic constants C44 and C66 are consistent with the average value of the previously mentioned Brillouin scattering. Conversely, the four elastic constants, C11, C33, C12, and C23, slightly deviate outside the range of previous Brillouin scattering results. The present results, except those for C12, are consistent with recent lattice dynamic analysis of inelastic X-ray scattering data. The adiabatic bulk modulus was calculated as 298 GPa, which is smaller and more consistent with the result of compression experiments than any other Brillouin scattering results (301–312 GPa). The present result shows greater P-wave velocity anisotropy (24.7%) than any preceding work. To understand the unique elastic properties of stishovite, the Gingham check model was proposed and examined. The result shows that the octahedron of 6-coordinated Si in stishovite crystal has stiffness comparable to that of diamond.  相似文献   

16.
The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe–Ti oxide deposits. The Fe–Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe–Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu? = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu? = 0.75 to 0.83), granites and trachytes (Eu/Eu? = 0.55–0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe–Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe–Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite–gabbro complexes in the region likely formed in a similar manner.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):867-872
Sediment sampled from Taichung Harbor was mixed with local reservoir sediment at different weight ratios to prepare lightweight aggregate at 1050, 1100, and 1150 °C. A pressure of 3000 or 5000 psi was used to shape the powder mixtures into pellets before the heating processes. The results indicate that the leaching levels of trace metals from the lightweight aggregate samples are considerably reduced to levels less than Taiwan Environmental Protection Administration regulatory limits. Increasing final process temperature tends to reduce the bulk density and crushing intensity of lightweight aggregate with a concomitant increase in water sorption capability. Lightweight aggregate with the lowest bulk density, 0.49 g cm−3 for the 5000 psi sample, was obtained with the heating process to 1150 °C. Based on the X-ray absorption near edge structure results, FeSO4 decomposition with a concomitant release of SOx (x = 2, 3) is suggested to play an important role for the bloating process in present study.  相似文献   

18.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

19.
The ~ 14 km diameter Jänisjärvi impact structure is located in Svecofennian Proterozoic terrain in the southeastern part of the Baltic shield, Karelia, Russia. Previous radioisotopic dating attempts gave K/Ar and 40Ar/39Ar ages of 700 ± 5 Ma and 698 ± 22 Ma, respectively, with both results being difficult to interpret. Recent paleomagnetic results have challenged these ages and proposed instead ages of either 500 Ma or 850–900 Ma. In order to better constrain the age of the Jänisjärvi impact structure, we present new 40Ar/39Ar data for the Jänisjärvi impact melt rock. We obtained five concordant isochron ages that yield a combined isochron age of 682 ± 4 Ma (2σ) with a MSWD of 1.2, P = 0.14, and 40Ar/36Ar intercept of 475 ± 3. We suggest that this date indicates the age of the impact and therefore can be used in conjunction with existing paleomagnetic results to define the position of the Baltica paleocontinent at that time. Argon isotopic results imply that melt homogenization was achieved at the hundred-micrometer scale certainly, because of the low-silica content of the molten target rock that allows fast 40Ar? diffusion in the melt. However, the large range of F(40Ar?inherited) (4.1% to 11.0%) observed for seven grains shows that complete isotopic homogenization was not reached at the centimeter and perhaps the millimeter scale. The F(40Ar?inherited) results are also in good agreement with previous Rb and Sr isotopic data.  相似文献   

20.
Growth, stem morphology and some biochemical parameters were studied of one completely submerged (Myriophyllum spicatum) and two floating leaved macrophytes (Nymphoides peltata and Trapa japonica) under different turbulence velocities. The root mean square velocities of the high, medium and low amount of turbulence that was generated for the experiment were 2.18 ± 0.66, 1.48 ± 0.26 and 0.70 ± 0.07 cm s−1, respectively, in the microcosm. All three experimental plants survived exposed to all turbulence conditions provided, although a decrease in shoot elongation rate was associated with an increase in turbulence. Acceleration of tissue H2O2 generation and MDA content increased during the study period in all plant species. Oxidative enzymatic activities (POD, IAA and CKX) increased with time in plants under medium and high turbulence velocities. The shoot elongation rate, stem and leaf diameter, chlorophyll content and carbohydrate fractionations were found to be affected by this abiotic stress. It is evident from this study that high turbulence velocity inhibits normal metabolic activities of all three plants, while low to medium turbulence does not harm the floating leaved plants. Moreover, floating leaved plants were found to possess highly capable strategies to cope with this mechanical stress than completely submerged species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号