首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Temporal and spatial moment analysis of one-dimensional equations governing fate and transport of parent compounds along with their transformation products is useful for parameter estimation of model parameters, and for understanding the average attributes of contaminant behavior. The objective of this paper is to present analytical expressions for the lower order moments of members in a sequential chain reaction, where members undergo first-order decay to produce the next member in the chain. Specifically, moments up to second order are discussed for the first two members. For the case of purely advective transport (Peclet number tending to infinity), temporal moment expressions are provided for more members of the chain. The sensitivity of temporal moments is examined with respect to Peclet number and transformation rates. Spatial moments are derived by two methods—one using Fourier transforms and another using moment generating differential equations. The behavior of lower order moments for the first few members of a chain can be elucidated from their mathematical expressions. However, expressions for higher order moments tend to be very complicated especially for members further down the chain.  相似文献   

2.
This paper describes the first attempt to infer ocean currents from the shapes of seismic streamers using real data. It demonstrates that it is feasible to infer the ocean currents, using a total least‐squares solution at each shotpoint, when there is no lateral steering. There are some artefacts in the inferred currents when there is lateral steering; this is believed to be caused by errors in estimating the streamer velocity. This paper describes the residual equations that form the cost function and discusses how to choose weights in the cost function based on physical criteria. Correctly choosing weights is something of an art and requires further research to make automatic and robust.  相似文献   

3.
A novel set of SAC/FEMA‐style closed‐form expressions is presented to accurately assess structural safety under seismic action. Such solutions allow the practical evaluation of the risk integral convolving seismic hazard and structural response by using a number of idealizations to achieve a simple analytical form. The most heavily criticized approximation of the SAC/FEMA formats is the first‐order power‐law fit of the hazard curve. It results to unacceptable errors whenever the curvature of the hazard function becomes significant. Adopting a second‐order fit, instead, allows capturing the hazard curvature at the cost of necessitating new analytic forms. The new set of equations is a complete replacement of the original, enabling (a) accurate estimation of the mean annual frequency of limit‐state exceedance and (b) safety checking for specified performance objectives in a code‐compatible format. More importantly, the flexibility of higher‐order fitting guarantees a wider‐range validity of the local hazard approximation. Thus, it enables the inversion of the formulas for practically estimating the allowable demand or the required capacity to fulfill any design objective. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
High-resolution geologic models that incorporate observed state data are expected to effectively enhance the reliability of reservoir performance prediction. One of the major challenges faced is how to solve the large-scale inverse modeling problem, i.e., to infer high-resolution models from the given observations of state variables that are related to the model parameters according to some known physical rules, e.g., the flow and transport partial differential equations. There are typically two difficulties, one is the high-dimensional problem and the other is the inverse problem. A multiscale inverse method is presented in this work to attack these problems with the aid of a gradient-based optimization algorithm. In this method, the model responses (i.e., the simulated state data) can be efficiently computed from the high-resolution model using the multiscale finite-volume method. The mismatch between the observations and the multiscale solutions is then used to define a proper objective function, and the fine-scale sensitivity coefficients (i.e., the derivatives of the objective function with respect to each node’s attribute) are computed by a multiscale adjoint method for subsequent optimization. The difficult high-dimensional optimization problem is reduced to a one-dimensional one using the gradient-based gradual deformation method. A synthetic single-phase transient flow example problem is employed to illustrate the proposed method. Results demonstrate that the multiscale framework presented is not only computationally efficient but also can generate geologically consistent models. By preserving spatial structure for inverse modeling, the method presented overcomes the artifacts introduced by the multiscale simulation and may enhance the prediction ability of the inverse-conditional realizations generated.  相似文献   

5.
推导了模态参数对于损伤构件的一阶和二阶灵敏度矩阵,并对在推导一阶和二阶振型灵敏度的过程中产生的模态截尾误差进行了改进。根据泰勒级数展开的原理分别建立了一阶和二阶的灵敏度方程。考虑到一阶灵敏度方程求解速度快和二阶灵敏度方程求解精度高的特点,本文提出了一种用于结构损伤识别的混合迭代算法,该算法用二阶非线性的解析解作为算法的第一次迭代值,用一阶灵敏度方程的求解值对该算法的第一次迭代值进行关于泰勒级数截尾误差的修正。研究表明,本文提出的混合迭代算法由于采用了精确度较高的二阶非线性解析解作为迭代修正的初值,因此,迭代修正精度更高,收敛性更好。  相似文献   

6.
A mathematical optimal control method is developed to identify a hydraulic conductivity distribution in a density dependent flow field. Using a variational method, the adjoint partial differential equations are obtained for the density- dependent state equations used for the saline aquifer water flow. The adjoint equations are numerically solved in through a finite difference method. The developed method is applied to identify the hydraulic conductivity distribution through the numerical solution of an optimal control problem. To demonstrate the effectiveness of the optimal control method, three numerical experiments are conducted with artificial observation data. The results indicate that the developed method has the potential to accurately identify the hydraulic conductivity distribution in a saline water aquifer flow system.  相似文献   

7.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   

8.

The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride’s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green’s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green’s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green’s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.

  相似文献   

9.
In this paper we derive an integral formula that encompasses all linear processes on seismic data. These include migration, demigration and residual migration, as well as data mapping procedures such as transformation to zero offset, inverse transformation to zero offset, residual transformation to zero offset and offset continuation. The derivation of the equation is different from all previous approaches to unification. Here we do not use a cascaded operation between two operators, but rather the superposition principle. In this regard, the derivation is not only more fundamental, but also simpler and more general. We study the kinematics and the dynamics of these processes and show that the signals can be reconstructed asymptotically either by finding the envelope of particular surfaces or by stacking energy along “adjoint” surfaces. For example, in the case of migration, the first set of surfaces are isochrons, while the “adjoint” surfaces are diffraction responses. In practice, the distinction between these two types of surfaces is equivalent to choosing the order of the computational loops with regard to the input and output seismic traces.  相似文献   

10.
We consider zoning for the design criterion that minimizes the expected present value of the total cost, including the initial cost as well as losses due to damage and failure. The problem consists of the following: given the number of zones, their boundaries and design coefficients must be such that they minimize the expected present value of all structures built in the region. We will refer to solutions in one or more dimensions, depending on the number of the types of structures built in the region to be zoned. Two methods are proposed to solve the problems. The first method is based on the different combinations performed in order to attain optimum zoning. The second method uses an analogy to the evolution of biological systems. The work ends by applying the methods developed to a region of known seismicity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
用地质雷达数据资料反演二维地下介质的方法   总被引:7,自引:3,他引:7       下载免费PDF全文
从二维麦克斯韦方程组出发推导出反演介电常数和电导率等二维介质物性参数的反演公式.反演的步骤是: 建立初始猜测模型,利用电磁波时间域有限差分法模拟正演数据,用正演数据与观测数据之间的数据残差建立目标函数,通过引入一个由麦克斯韦方程计算的伴随场,将目标函数对介质参数的导数表示成显式形式,应用最优化理论得出对初始猜测模型的修改,用共轭梯度法迭代,最终得到反演结果.用合成数据反演具有粗糙地表的非导电介质的介电常数,用实验数据同时反演介电常数和电导率,并比较了麦克斯韦方程反演结果与声波方程反演结果、波动方程偏移剖面的差异.  相似文献   

12.
The objective of in situ thermal treatment is typically to reduce the contaminant mass or average soil concentration below a specified value. Evaluation of whether the objective has been met is usually made by averaging soil concentrations from a limited number of soil samples. Results from several field sites indicate large performance uncertainty using this approach, even when the number of samples is large. We propose a method to estimate average soil concentration by fitting a log normal probability model to thermal mass recovery data. A statistical approach is presented for making termination decisions from mass recovery data, soil sample data, or both for an entire treatment volume or for subregions that explicitly considers estimation uncertainty which is coupled to a stochastic optimization algorithm to identify monitoring strategies to meet objectives with minimum expected cost. Early termination of heating in regions that reach cleanup targets sooner enables operating costs to be reduced while ensuring a high likelihood of meeting remediation objectives. Results for an example problem demonstrate that significant performance improvement and cost reductions can be achieved using this approach.  相似文献   

13.
The system of Biot vector equations in the frequency space includes two elliptic-type vector partial differential equations with unknown displacement vectors in the solid and liquid phases. Considering the Biot equations, alongside with Pride??s equations, the key approaches to the theoretical study of the elastic waves in the two-phase fluid-saturated media, the author suggests an analytical solution for the inhomogeneous Biot equations in the frequency space, which is reduced to finding its fundamental solution (Green??s function). The solution of this problem consists of solutions for two systems of Biot equations. In the first system, only the first equation is inhomogeneous, while in the second system, only the second equation is inhomogeneous and, as it is shown, its right-hand side is exclusively a potential function. The fundamental solution of the full system of inhomogeneous Biot equations (in which both equations are inhomogeneous) is represented in the form of Green??s matrix-tensor, for the scalar elements of which the analytical relations are presented. The obtained formulas describing the elastic displacements of both the solid and liquid phases reflect three wave types, namely, compressional waves of the first and the second kind (the fast and the slow waves, respectively) and shear waves. Similar terms (those describing the same type of the elastic waves in the solid and liquid phases) in the expressions for Green??s functions are linked with each other through the coefficient that links the components of the displacement vectors of the solid and liquid phases corresponding to the given wave type.  相似文献   

14.
地下地层普遍存在各向异性,忽略介质各向异性会导致速度估计不准确,成像精度下降.基于二阶声波方程的最小二乘逆时偏移忽略了介质各向异性及密度变化的影响,致使模拟地震数据与实际观测数据不匹配,影响收敛速度和反演成像质量.VTI介质一阶速度-应力方程能较好适应各向异性变密度情况,为此,本文首先从VTI介质一阶速度-应力方程出发,进行波动方程线性化;其次推导了相应的扰动方程和伴随方程,并通过伴随状态法得到梯度更新公式;最终形成基于一阶方程的LSRTM算法理论及实现流程.在实现算法的基础上,通过数值试算及成像结果对比,验证了本文算法在处理变密度和VTI介质时的有效性和优越性.偏移速度以及各向异性Thomsen参数误差的敏感性测试及误差收敛曲线对比结果进一步表明:速度及Thomsen参数对成像结果存在明显影响,其中速度敏感性最强,参数epsilon次之,参数delta的敏感性最弱.  相似文献   

15.
Variational data assimilation in the transport of sediment in river   总被引:1,自引:0,他引:1  
The variational method of data assimilation is used to solve an inverse problem in the transport of sediment in river, which plays an important role in the change of natural environment. The cost function is defined to measure the error between model predictions and field observations. The adjoint model of IAP river sedimentation model is created to obtain the gradient of the cost function with respect to control variables. The initial conditions are taken as the control variables; their optimal values can be retrieved by minimizing the cost function with limited memory quasi-Newton method (LMQN). The results show that the adjoint method approach can successfully make the model prediction well fit the simulated observations. And it is expected to use this method to solve other inverse problems of river sedimentation. But some numerical problems need to be discussed before applying to real river data. Project partially supported by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences  相似文献   

16.
Earthquake engineers have made a lot of efforts to derive a comprehensive set of closed form expressions for performance evaluation of frames, which are already presented in guidelines such as SAC/FEMA. These analytical expressions have been developed to estimate the annual probability of exceeding a limit state. In the process of such seismic assessments, some essential assumptions are adopted to simplify the process. One of these fundamental assumptions declares that drift demand at any seismic intensity level follows a lognormal distribution around its median. To investigate the validity of this assumption, this paper describes a case study of the types of errors that could be produced by using the sample median as the central tendency. Based on the Maximum Likelihood Estimation method as well as other statistical evidence, this paper proposes the use of the sample geometric mean instead of the sample median for the central tendency. Further, the results of seismic reliability evaluations of 4 sample frames are compared based on utilizing both the geometric mean and the sample median. In this process, both first and second order power law fits of the hazard curve are implemented to compare the effects of hazard estimation and the selection of the central tendency on the final results. It is observed in the application example that the sample geometric mean could lead to more accurate results.  相似文献   

17.
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort.  相似文献   

18.
We have derived asymptotic expansions that can be used to estimate the impulse response of a conductive halfspace when excited by an airborne electromagnetic system. Two expressions are required to calculate the response, one is applicable in the late-time regime and a second is used for the early-time regime. Fortunately, there is a small overlap in the late- and early-time regimes. Asymptotic expansions are commonly used for interpreting ground EM data, but our expressions are the first ones applicable to the airborne situation. The expansions are simple to program, can be calculated extremely rapidly and will be useful for understanding and interpreting airborne electromagnetic data. As an example of the use of the expressions, we have calculated the response of seawater and compared this with the airborne electromagnetic response measured off the coast of Perth, Western Australia.  相似文献   

19.
An important question regarding the study of mean field dynamo models is how to make precise the nature of their underlying dynamics. This is difficult both because relatively little is known about the dynamical behaviour of infinite dimensional systems and also due to the numerical cost of studying the related partial differential equations. As a first step towards their understanding, it is useful to consider the corresponding truncated models. Here we summarise some recent results of the study of a class of truncated axisymmetric mean field dynamo models. We find conclusive evidence in these models for various types of intermittency as well as multiple attractors and final state sensitivity. We also find that the understanding of the underlying dynamics of such dynamo models requires the study of a new class of dynamical systems, referred to as the non-normal systems. Current work demonstrates that these types of systems are capable of a novel type of intermittency and also of relevance for the understanding of the full axisymmetric PDE dynamo models.  相似文献   

20.
张超  姚华建  童平  刘沁雅  雷霆 《地球物理学报》1954,63(11):4065-4079
伴随层析成像(Adjoint Tomography)通过求解全波方程来准确模拟地震波在复杂介质中的传播,并利用波形信息来反演地下结构,是新一代的高分辨率成像方法.其中3-D伴随层析成像需要庞大的计算资源,而2-D反演相对更具计算效率.面波和远震体波是研究地壳上地幔速度结构的重要方法,它们对S波速度及Moho面的敏感度不同,通过联合反演,可以得到更为准确的S波速度结构及Moho面.通过两种数据的高度互补性,本文提出基于伴随方法的线性台阵背景噪声面波和远震体波联合成像方法,同时约束台阵下方S波速度结构及Moho面形态.我们将该方法应用到符合华北克拉通岩石圈典型结构特征的理论模型上,测试结果表明联合反演方法优势明显,相比于面波伴随层析成像,能获得更高分辨率的S波速度结构,同时能精准约束Moho面形态.相比于体波伴随层析成像,联合反演能有效压制高频假象,降低波形反演过程中的非线性化程度.本研究有望提供一种更为高效精准的线性台阵成像方法,搭建联合伴随层析成像理论框架,提升岩石圈成像分辨率,并为后续其他类型波形数据的引入提供思路和方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号