首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
海水入侵是沿海地区主要环境地质问题,分析沿海地下水和河水水化学特征,对圈定海水入侵范围及判断影响程度具有重要意义。通过在福建长乐市海水入侵含水层和闽江口海水上溯区采取23件水样进行室内常规离子测试,获得了海水入侵(上溯)区水中主要离子含量。利用海水稀释线分析主要离子与Cl离子之间的相对变化,对比离子实际浓度与理想浓度的差异,分析海水入侵对水化学变化的影响。研究结果显示,随着海水与淡水混合,水化学类型从海水到淡水依次为Na-Cl型水-Na-Cl·HCO3型水-Na·Ca-HCO3·Cl型水-Ca-HCO3型水;引起水化学类型和TDS变化的主要因素为Na+和Cl-的增加;Ca2+、Mg2+高于海水稀释线和理想浓度线,Na+、K+在海水稀释线和理想浓度线上下跳跃:Br-/Cl-与海水稀释线吻合较好,可以作为判断海水入侵范围的依据。  相似文献   

2.
Groundwater is of a paramount importance in arid areas, as it represents the main water resource to satisfy the different needs of the various sectors. Nevertheless, coastal aquifers are generally subjected to seawater intrusion and groundwater quality degradation. In this study, the groundwater quality of the coastal Jeffara aquifer (southeastern Tunisia) is evaluated to check its suitability for irrigation purposes. A total of 74 groundwater samples were collected and analyzed for various physical and chemical parameters, such as, electrical conductivity, pH, dissolved solids (TDS), Na, K, Ca, Mg, Cl, HCO3, and SO4. Sodium adsorption ratio, magnesium adsorption ratio, Sodium percentage, and permeability index were calculated based on the analytical results. The analytical results obtained show a strong mineralization of the water in the studied aquifer. TDS concentrations range from 3.40 to 18.84 g?L?1. Groundwater salinity was shown to be mainly controlled by sodium and chloride. The dominant hydrochemical facieses are Na–Cl–Ca–SO4, mainly as a result of mineral dissolution (halite and gypsum), infiltration of saline surface water, and seawater intrusion. Assessment of the groundwater quality of the different samples by various methods indicated that only 7% of the water, in the northwest of the study area, is considered suitable for irrigation purposes while 93% are characterized by fair to poor quality, and are therefore just suitable or unsuitable for irrigation purposes.  相似文献   

3.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

4.
The area of study lies at the northeastern part of Nile Delta. Global shoreline regression and sea-level rise have their own-bearing on the groundwater salinization due to seawater intrusion. A new adopted approach for vulnerability mapping using the hydrochemical investigations, geographic information system and a weighted multi-criteria decision support system (WMCDSS) was developed to determine the trend of groundwater contamination by seawater intrusion. Six thematic layers were digitally integrated and assigned different weights and rates. These have been created to comprise the most decisive criteria used for the delineation of groundwater degradation due to seawater intrusion. These criteria are represented by the total dissolved solids, well discharge, sodium adsorption ratio, hydrochemical parameter (Cl/HCO3), hydraulic conductivity and water types. The WMCDSS modeling was tried, where a groundwater vulnerability map with four classes ranging from very low to high vulnerability was gained. The map pinpointed the promising localities for groundwater protection, which are almost represented by the very low or low vulnerability areas (53.69 % of the total study area). The regions having high and moderate groundwater vulnerability occupy 46.31 % of total study area, which designate to a deteriorated territory of groundwater quality, and needs special treatment and cropping pattern before use. However, the moderate groundwater vulnerability class occupies an area of about 28.77 % of the total mapped area, which highlighted the need for certain management practices to prevent the saltwater intrusion from expanding further to the south. There was a good correlation of the constructed vulnerability map with the recently gathered water quality data and hydrochemical facies evolution. The plotting of water quality data on Piper trilinear diagram revealed the evolution of freshwater into the mixing and the saline zones as an impact of seawater intrusion, which validates the model results.  相似文献   

5.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   

6.
Seawater intrusion into the shallow aquifer in the Syrian coast, north of Latakia (Damsarkho, Ras Ibn Hani) and south of Tartous (Al Hamidieh, Ein Zarka) was studied using hydrochemical and isotopic techniques. The electrical conductivity (EC) distribution map north of Latakia revealed that mixing in this area is the consequence of a frontal intrusion of seawater within the fresh groundwater aquifer which, in turn, results from intensive pumping since the 1960s which has lowered the water table inland below sea level. In Ein Zarka, south of Tartous, in contrast, the EC distribution revealed that seawater intrusion is due to local up-coning as a result of intensive pumping. The deuterium and oxygen-18 relationship is that of a mixing line with a slope of 5.55, indicating an intrusion between freshwater and seawater. In addition, the relationship between oxygen-18 and chloride reveals that the mixing has a dominant role compared to evaporation process. The mixing ratios are estimated to be between 6 and 10% north of Latakia, while they do not exceed 3% south of Tartous. A tritium model was applied to compute the “mean transit time”, which is estimated to be around 10 years, on average, to reach the equilibrium that existed originally between the fresh groundwater and seawater, provided that severe pumping is completely halted and the aquifer is naturally recharged by rainfall and deep percolation of irrigation water, thereby allowing the restoration of the hydraulic gradient. This paper is dedicated to the memory of Dr. Y. Yurtsever.  相似文献   

7.
The Quaternary aquifer of Wadi Ham, UAE has been overexploited during the last two decades to meet the increasing water demands. As a result, the dynamic balance between freshwater and seawater has been disturbed and the quality of the groundwater has deteriorated. In this paper, a 2D earth resistivity survey was conducted in Wadi Ham in the area between Fujairah and Kalba to delineate the seawater intrusion. Existing monitoring wells were used to measure the horizontal and vertical variations in water salinity and thus to improve the interpretation of earth resistivity imaging data. Results of vertical electrical soundings and chemical analyses of collected water samples were used to obtain an empirical relationship between the inferred earth resistivity and the amount of total dissolved solids. This relationship was used along with the true resistivity sections resulting from the inversion of 2D resistivity data to identify three zones of water-bearing formation (fresh, brackish, and salt-water zones). Along the four 2D resistivity profiles, the depth to the fresh-brackish interface exceeded 50 m at the western part of the area and was in the order of 10 m or less in the eastern side near the shoreline. Depth to the brackish-saline water interface reached about 70 m in the western side and was in the order of 20 m in the eastern side. The thickness of the fresh water zone decreases considerably in the farming areas toward Kalba and thus the degree of seawater intrusion increases.  相似文献   

8.
Environmental stable (δ18O, δ2H, δ13C) and radioactive (3H and 14C) isotopes, together with geochemical data were used to identify the origin of salinization in different environments. Three case studies from sedimentary basins of continental Portugal are presented: (i) two at the Meso-Cenozoic Portuguese southern border (Algarve basin) and (ii) one at the Lower Tagus–Lower Sado basin (central Portugal), with a new data interpretation. Groundwater salinization occurs in all three cases, and may reach values of several grams of Total Dissolved Solids per liter; above accepted limits for drinking water. The source of this high mineralization could be: (a) seawater intrusion (ancient or modern); (b) dissolution from diapiric structures intruding on the aquifer systems; (c) brine dissolution at depth; and (d) evaporation of irrigation water. The results obtained have provided an effective label for seawater and freshwater, to enable seawater intrusion to be traced, as well as the identification of other processes that might be responsible for groundwater salinization, such as salt minerals dissolution and ion exchange.  相似文献   

9.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

10.
The integration of the statistical approaches and GIS tools with the hydrogeological and geological contexts allowed the assessment of the processes that cause groundwater quality deterioration in the great important deltaic aquifer in the northeastern Tunisia (Medjerda Lower Valley Aquifer). The spatial variation of the groundwater parameters and the molar ratio (Cl?/Br?) were also used to determine the possible impacts from seawater intrusion and from the septic tank leachate. Sixty shallow groundwater samples were collected in 2014 and analyzed for major and trace ions over an area of about 1090 km2 to determine the suitability for drinking or agricultural purposes. The total dissolved solids (TDS) content ranges from 1005 to 19,254 mgl?1 with a mean value of 3477.18 mgl?1. The chemistry is dominated by the sodium–chloride waters (55%). Mapping of TDS, Cl?, Na+, SO42? and NO3? using kriging method shows a clear increase in salinity toward the coastline accompanied by Na+ and Cl? increase which may be related to seawater intrusion and halite dissolution. Locally, higher nitrate concentration is related to the agricultural activities inducing contribution of chemical fertilizers and irrigation with treated wastewater. The saturation indices indicate that all carbonate minerals tend to reach saturation equilibrium confirming water–rock interactions, while evaporitic minerals are still in sub-saturation state and may increase the salinity of the groundwater. The principal component analysis proves the occurrence of groundwater contamination principally by seawater intrusion in the factor I (74.15%) and secondary by an anthropogenic source in the factor II (10.35%).  相似文献   

11.
The Batinah coastal plain in northern Oman has experienced a severe deterioration of groundwater quality due to seawater intrusion as a result of excessive groundwater abstraction for agricultural irrigation. Upgrading all farms to fully automated irrigation technology based on soil moisture sensors may significantly reduce the water demand and lead to recovering groundwater levels. This study compares the effects of smart irrigation technology, recharge dams, and a combination of both on seawater intrusion in the coastal aquifer of the Batinah. A groundwater flow and transport model is used to simulate the effect of reduced pumping rates on seawater intrusion for various intervention scenarios over a simulation period of 30 years, and an economic analysis based on cost-benefit analysis is conducted to estimate the potential benefits. Results indicate that a combination of smart irrigation and recharge dams may prevent further deterioration of groundwater quality over the next 30 years. In conjunction with increased efficiency, this combination also generates the highest gross profit. This outcome shows that the problem of seawater intrusion needs to be tackled by a comprehensive, integrated intervention strategy.  相似文献   

12.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

13.
Soil column experiments showed that a surficial sodic soil is efficiently reclaimed using freshwater, after the addition of saturated gypsum solution. Gypsum application in the field was beneficial in terms of maintaining high soil permeability, increased water infiltration and neutral pH after a rainfall event. In the present paper, two different reclamation techniques for the plough layer of a sandy loam sodic soil were tested in laboratory columns, 25 cm long and 10 cm in diameter; the first using freshwater alone and the second using a saturated gypsum solution. The dynamics of salt removal were studied by continuous analysis of the water drained from the bottom of the columns. When freshwater was used, sodium presented the lower removal rate and adversely affected soil permeability. When gypsum solution was used, calcium was present in the flushing solution and the effect of sodium dominance on clay dispersion and soil clogging was limited. The results presented in this study are of practical importance with respect to the reclamation of sodic soils found in the coastal area of the east Nestos Delta, Greece, where freshwater is limited, due to seawater intrusion, and saline groundwater is used for irrigation.  相似文献   

14.
灰色关联度法在盘锦市曙光地区地下水水质评价中的应用   总被引:4,自引:0,他引:4  
为了解辽河油田区域水资源环境背景和地下水水质变化趋势,本文选取盘锦市曙光地区6个水源地多年地下水水质监测资料,应用灰色关联度方法对地下水水质进行综合评价,结果表明近20年来,该区地下水水质逐渐变差,集中表现在Cl-和总矿化度较高,主要原因为油田污染及海水入侵等。  相似文献   

15.
广东硇洲岛地下水化学演化及成因机理   总被引:4,自引:0,他引:4  
地下水一直是广东硇洲岛唯一的水资源,但近年来许多地区地下水咸化趋势加剧,严峻威胁着岛上居民的用水安全,研究地下水化学演化及成因机理,对预防和减缓水质变咸意义重大。本文结合区域水文地质条件、地形地貌条件及水化学资料分析了整个岛屿地下水水质状况,在此基础上采用Piper三线图研究了水化学特征,并利用PHREEQC软件对水文地球化学演化规律进行模拟研究,结果表明:(1)海水入侵是造成地下水咸化的主要原因,咸化对水质的影响主要表现为Cl-的增加,Ca2+在区分该地区不同水体时反应灵敏,是良好的识别指标之一;(2)海水入侵的过程中,过渡带前缘不存在经受长期古海水演化而成的卤水与地下淡水的混合作用,地下水中Mg2+、Ca2+与Na+之间存在着强烈的离子交换,石膏、白云石及方解石处于不饱和状态;(3)浅层地下水与深层地下水之间无明显的水力联系,属于相对独立的地下水流系统。在全球变暖,海平面上升的总趋势下,海岛地下水开发必须合理规划、严格管理,以防引发大规模海水入侵灾害的发生。  相似文献   

16.
The Rhône delta, South of France (Camargue, 750 km2) is a coastal saline wetland located along the Mediterranean Sea. The confined aquifer of this delta shows high values of electrical conductivity rising from the north (4 mS/cm) to the shoreline (58 mS/cm). This work aims to identify the origin of groundwater salinity and the geochemical processes occurring in this coastal confined aquifer according to the degree of salinity. A natural tracing approach is considered using monthly sampling in 8 piezometers for chemical and isotopic analyses (18O, 2H, 13CTDIC). Ionic and isotopic ratios demonstrate that strong salinities are due to a simple mixing between Mediterranean seawater and freshwater; seawater contribution reaches up to 98% at 8 km from the shoreline. Seawater intrusion induces a particular groundwater chemistry which varies with the degree of seawater contribution: (1) In the less saline part of the aquifer (seawater contribution <20%), the intrusion induces an increase of Na+ in groundwater leading to Ca2+/Na+ exchange processes. The δ13CTDIC analyses show that matrix exchange processes most likely occur for the less saline samples. (2) In the saline part of the aquifer (seawater contribution >20%), the intrusion induces SO4 reduction which is confirmed by highly depleted δ13CTDIC values (up to −19‰). The δ13CTDIC also reveals that methanogenesis processes may occur in the most reductive part of the aquifer. Due to SO4 reduction, the intrusion induces a shift in carbonate equilibrium leading to supersaturation with respect to dolomite and/or magnesian calcite. Thus carbonate precipitation may occur in the area strongly influenced by seawater.  相似文献   

17.
Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ~1,400 chemical analyses and ~90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370– 600 mm/yr, respectively). Molar Cl/Br ratios (median 540–600), depleted δ2H and δ18O (?24.7‰, ?4.5‰) relative to seawater (Cl/Br ~655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (~100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.  相似文献   

18.
Groundwater depletion and seawater intrusion constitute major challenges along coastal aquifers in arid areas. This paper assesses the role of groundwater recharge dams constructed to replenish aquifers and fight seawater intrusion with reference to AlKhod dam, Oman, sited 7 km from the coast on a gravely unconfined aquifer. Water table rise in piezometers located downstream from the dam shows regular patterns correlating with magnitude of wadi flow, whereas upstream piezometers show irregular patterns. Controlled release of water captured by the dam optimizes water percolation and enhances artificial recharge which was estimated in the wet years 1997, 2003 and 2005 as 15, 22 and 27 Mm3, respectively, using water table fluctuation method. Recharge contributed 40–60 % of the total annual abstraction. Groundwater salinity increased in the 1980s and 1990s and the saline/freshwater interface advanced inland, but has receded partially after 1997 (highest rainfall) and completely after 2005 indicated by reduction in electrical conductivity and thickening of freshwater lens. The recession is attributed to the dam’s induced recharge and reduction of pumping in 2004 following the commissioning of Barka desalination plant. Integrating artificial recharge with groundwater resources management is therefore an effective measure to replenish aquifers in arid areas and mitigate seawater intrusion along the coasts.  相似文献   

19.
海水入侵水质变化模拟实验研究   总被引:1,自引:0,他引:1  
通过模拟海水入侵地下水过程的实验,研究了青岛地区海水对不同土壤浸泡上清液中各种元素的变化,得出了海水入侵过程中常规离子如Cl-、HCO3-、P和Ca2 的变化规律。与此同时,海水含有一定量重金属。在与不同土壤浸泡过程中,实验中分析了Ni、Cd、Cr、Pb、Cu、Mn和Zn共7种元素。上清液中Ni、Cd和Zn浓度增加,Pb、Cu和Cr的浓度略有降低或基本不发生变化。用饮用水和蒸馏水分别与不同土壤浸泡作参比实验,上清液中各种元素基本不发生变化。浸出液中基本上不含重金属。另外,应用海水、饮用水和蒸馏水与不同土壤浸泡时,所有上清液中均未检测出Mn元素。因此,海水入侵过程中,地下水不仅变咸,也使地下水重金属增加。  相似文献   

20.
Small islands groundwater are often exposed to heavy pumpings as a result of high demand for freshwater consumption. Intensive exploitation of groundwater from Manukan Island’s aquifer has disturbed the natural equilibrium between fresh and saline water, and has resulted increase the groundwater salinity and leap to the hydrochemical complexities of freshwater–seawater contact. An attempt was made to identify the hydrochemical processes that accompany current intrusion of seawater using ionic changes and saturation indices. It was observed that the mixing between freshwater–seawater created diversity in geochemical processes of the Manukan Island’s aquifer and altered the freshwater and seawater mixture away from the theoretical composition line. This explained the most visible processes taking place during the displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号