首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
 The Mediterranean Ridge (eastern Mediterranean) is a large accretionary complex that results from the Africa–Europe–Aegean plates convergence. Multichannel seismic data, combined with previous results showed that the ridge comprises distinct major structural domains facing different forelands: (1) An outer domain is bounded to the south by the ridge toe. Underneath the Ionian and Levantine outer Ridge, Messinian evaporites act as a major decollement level. (2) An axial, or crestal, ridge domain with mud diapiric and mud volcano activity is bounded to the north by backthrust. (3) A less tectonized inner Ridge domain, possibly a series of former forearc basins, abuts the Hellenic Trench. The ridge displays strong along-strike variations. These variations can be interpreted as consequences of an ongoing collision against the Libyan continental promontory.  相似文献   

2.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   

3.
The structural evolution of the Messinian evaporites in the Levantine Basin   总被引:2,自引:0,他引:2  
The Levantine Basin in the South-eastern Mediterranean Sea is a world class site for studying the initial stages of salt tectonics driven by differential sediment load, because the Messinian evaporites are comparatively young, the sediment load varies along the basin margin, they are hardly tectonically overprinted, and the geometry of the basin and the overburden is well-defined. In this study we analyse depositional phases of the evaporites and their structural evolution by means of high-resolution multi-channel seismic data. The basinal evaporites have a maximum thickness of about 2 km, precipitated during the Messinian Salinity Crisis, 5.3–5.9 Ma ago. The evaporite body is characterized by 5 transparent layers sequenced by four internal reflections. We suggest that each of the internal reflection bands indicate a change of evaporite facies, possibly interbedded clastic sediments, which were deposited during temporal sea level rises. All of these internal reflections are differently folded and distorted, proving that the deformation was syn-depositional. Thrust angles up to 14° are observed. Backstripping of the Pliocene–Quaternary reveals that salt tectonic is mainly driven by the sediment load of the Nile Cone. The direction of lateral salt displacement is mainly SSW–NNE and parallel to the bathymetric trend. Apparent rollback anticlines off Israel result rather from differential subsidence than from lateral salt displacement. In the south-eastern basin margin the deposition of the Isreali Slump Complex (ISC) is coeval with the onset of salt tectonic faulting, suggesting a causal link between slumping processes and salt tectonics.

The superposition of ‘thin-skinned’ tectonics and ‘thick-skinned’ tectonics becomes apparent in several locations: The fold belt off the Israeli Mediterranean slope mainly results from active strike-slip tectonics, which becomes evident in faults which reach from the seafloor well below the base of the evaporites. Owing to the wrenching of the crustal segments which are bounded by deep-rooted fault lines like the Damietta–Latakia, Pelusium and Shelf Edge Hinge line the setting is transpressional south of 32°N, where the fault lines bend further towards the west. This adds a component of ‘thick-skinned’ transpression to the generally ‘thin-skinned’ compressional regime in the basin. Above 1.5 km of evaporites, a mud volcano is observed with the mud source seemingly within the evaporite layer. At the eastern Cyprus Arc, the convergence zone of the African and the Anatolian plates, deep-rooted compression heavily deformed the base of the evaporites, whereas at the Eratosthenes Seamount mainly superficial compression affecting the Post-Messinian sediments and the top of the evaporites is observed.  相似文献   


4.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   

5.
Submarine channel levee systems form important hydrocarbon reservoirs in many deep marine settings and are often deposited within a structurally active setting. This study focuses on recent submarine channels that developed within a deepwater fold and thrust belt setting from the Levant Basin, eastern Mediterranean Sea. Compressional deformation within the study area is driven by the up-dip collapse of the Nile cone above the ductile Messinian Evaporites. Structures such as folds and strike slip faults exert a strong control on channel location and development over time. From this study four end-member submarine channel–structure interactions can be defined: Confinement, diversion, deflection and blocking. Each of these channel–structure interactions results in a distinct submarine channel morphology and pattern of development compared to unconfined channel levee systems. Each interaction can also be used to assess timing relationships between submarine channel development and deformation.  相似文献   

6.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   

7.
A corridor 315 km wide centered along the southeast projection of the Atlantis fracture zone between 21°W and 29°W was investigated with seismic reflection, bathymetric, gravity, and magnetic profiles. Six sub-parallel, sediment-filled troughs in acoustic basement trend about 106° across the abyssal hills and lower continental rise off northwest Africa. Where the southernmost structural lineations cross the abyssal plain, they are interrupted by a ridge trending 080° surmounted by volcanic peaks.The structural lineations become less distinct landward of the western margin of the abyssal plain coincident with a decrease in topographic relief on acoustic basement and increasing sediment thickness. This transition is coincident with a reduction in the amplitude of gravity and magnetic anomalies.  相似文献   

8.
A high resolution seismic survey was carried out on the continental slope of Israel, NW of Caesarea. The area was studied in order to map the tectonic elements of the Dor structure, and to extrapolate and suggest a structural model of the tectonics of the continental slope of the SE Mediterranean since the Late Miocene. It was found that the continental slope was affected by two faulting systems—NW trending strike-slip faults and NNE trending normal faults. Faults of both systems are associated with numerous slumps along the slope. However, the NW trending faults belong to a faulting system of similar trend that abounds in the adjacent continent and extends northwestwards across the continental shelf and slope to the continental rise. The NNE trending faults form the shelf-edge faulting system that was associated with the subsidence of the eastern Mediterranean basin since the Pliocene. Thus the continental slope is not only a morphological transition zone but also a tectonic one, showing the influence of both the continental and the oceanic structural regimes in the SE Mediterranean region.  相似文献   

9.
A 2°×2° map of spreading centres and fracture zones surrounding the Indian Ocean RRR triple junction, at 25.5°S, 70°E, is described from a data set of GLORIA side-scan sonar images, bathymetry, magnetic and gravity anomalies. The GLORIA images show a pervasive fabric due to linear abyssal hills oriented parallel to the two medium-spreading ridges (the Central Indian Ridge (CIR) and Southeast Indian Ridge (SEIR)). A cuvature of the fabric occurs along fracture zones, which are also located by lows in the bathymetry and gravity data and by offsets between magnetic anomalies. The magnetic anomalies also record periods of asymmetric spreading marking the development of the fracture zones, including the birth, at anomaly 2A, of a short fracture zone 50 km north of the triple junction on the CIR, and its death near the time of the Jaramillo anomaly. In some localities, a fine-scale fabric corresponds to a coarser fabric on the opposite flank of the CIR, possibly indicating a persistent asymmetry in the faulting at the median valley walls if the fabric has a tectonic and not a volcanic origin. A plate velocity analysis of the triple junction shows that both the CIR and Southwest Indian Ridge (SWIR) are propagating obliquely; the CIR appears to form an oblique trend by segmenting into a series of almost normally-oriented segments separated by short-offset fracture zones. For the last 4 m.y., the abyssal hill lineations indicate that the CIR segment immediately north of the triple junction has been spreading with an average 10° obliquity. The present small 5 km offset of the centres of the CIR and SEIR median valleys (Munschy and Schlich, 1989) is shown to be the result of this obliquity and a 30% spreading asymmetry between anomaly 2 and the Jaramillo on the CIR segment immediately north of the triple junction.  相似文献   

10.
The External Calabrian Arc is located off the convex side of the Calabro-Peloritanian Arc in the northern Ionian Sea. A systematic reflection seismic survey indicates that it is made of different structural elements whose characters seem consistent with an active accretionary margin. The main structures are the Crotone-Spartivento slope (comparable to an inner trench slope) and the intermediate depressions (comparable to a trench area). Internal to these elements, the Crotone-Spartivento basin may represent a fore-arc basin. This partly outcrops in Calabria and its structure suggests that the accretionary margin developed at least since middle-upper Miocene.Subduction processes do not affect a true oceanic crust, because of the great thickness of sediments covering the whole eastern Mediterranean. Hence some peculiar features occur in the system. as the cobblestone topography, or are lacking, as a typical and continuous trench zone.In the areas with cobblestone topography we distinguish a Calabrian Ridge sensu stricto from a Calabrian Ridge sensu lato. The former is a N-S trending swell, external to the supposed trench zone, interpreted as a sedimentary outer-arc ridge produced by rather surficial tectonic accumulation of sediments further chaoticized by gravitative mechanisms. The Ridge s.l. is a very wide area with low relief and little or no seismic penetration. Tectonization seems gentler than in the Ridge s.s. and structural axes seem to possess different orientations. These areas are interpreted as due to a widespread surficial chaoticization above presumed decollement layers occurring within the sedimentary column of the Ionian bathyal plain.The pattern of deformations of the Calabrian Ridge seems consistent with the Calabro-Peloritanian Arc actively overriding the eastern Mediterranean, with a resultant direction of movement essentially towards the East.  相似文献   

11.
The results of 26 dives with the diving saucer Cyana in the Gulf of Tadjoura and Ghoubbet al Kharab (Republic of Djibouti) are presented. One can demonstrate that the sites of recent volcanism, tectonics and hydrothermal activity within the axial part of the Gulf of Tadjoura coincide with topographic highs trending at a high angle (azimuth 135°) with respect to the average trend of the axial trough of the Gulf (azimuth 080°). The highs owe their relief to both volcanism and normal faulting along a trend of 130–140°. Recent faulting on the bounding walls of the axial trough is also found along a trend of 130–140° where the faults interfere with another set of apparently older faults trending 070° parallel to the axial trough. Spacing between the active zones of the Gulf is regular and about 30 km. No evidence for transform faulting has been found, in contradiction to all previous kinematic models of the Gulf of Tadjoura. There is evidence that the presently active phase of opening associated with 130–140° faults is less than 0.7 my old and that there was an older phase associated with 070°–080° faults creating the main trough of the Gulf. The basaltic lavas created during the two phases have evolved from transitional to tholeiitic.  相似文献   

12.
The Gulf of Cadiz lies astride the complex plate boundary between Africa and Eurasia west of the Betic-Rif mountain belt. We report on the results of recent bathymetric swathmapping and multi-channel seismic surveys carried out here. The seafloor is marked by contrasting morphological provinces, spanning the SW Iberian and NW Moroccan continental margins, abyssal plains and an elongate, arcuate, accretionary wedge. A wide variety of tectonic and gravitational processes appear to have shaped these structures. Active compressional deformation of the wedge is suggested by folding and thrusting of the frontal sedimentary layers as well as basal duplexing in deeper internal units. There is evidence for simultaneous gravitational spreading occurring upslope. The very shallow mean surface and basal slopes of the accretionary wedge (1° each) indicate a very weak decollement layer, geometrically similar to the Mediterranean Ridge accretionary complex. Locally steep slopes (up to 10°) indicate strongly focused, active deformation and potential gravitational instabilities. The unusual surface morphology of the upper accretionary wedge includes “raft-tectonics” type fissures and abundant sub-circular depressions. Dissolution and/or diapiric processes are proposed to be involved in the formation of these depressions.  相似文献   

13.
In order to understand the structure and evolution of the Mediterranean Ridge accretionary complex, it is necessary to understand the structure and history of its foreland. The Ionian Abyssal Plain is one of the varying types of foreland. The state of knowledge for that is presented. Its contour and detailed relief are described for the first time. Based on published and hitherto unpublished seismic data, information on the thickness of the Plio-Quaternary and on the Messinian evaporites are presented. Of particular interest are data concerning the pre-Messinian reflectors. They indicate a pattern of tilted blocks and horst-like features created in pre-Messinian time by tensional tectonics. Varying subsidence continued, however, during Messinian time and controlled the thickness of evaporites. At some places (e.g. Victor Hensen Seahill) vertical tectonics seem to be still active. The main tectonic structures of the Ionian Abyssal Plain are not related to the process of the present accretion and subduction at the Africa/Eurasia plate boundary but are pre-existing and should influence the internal structure of the Mediterranean Ridge which is still growing at the expense of the foreland. As a consequence of our structural evidence, we favour the following interpretation: the Ionian Abyssal Plain is not a remainder of the Jurassic Tethyan ocean but originated by extensive attenuation of continental crust.  相似文献   

14.
Abyssal hills were delineated in a 185 × 185-km area by an 18.5 × 18.5-km grid of narrow-beam bathymetric and geophysical profiles in oceanic crust of Cretaceous age near 23°N latitude, 31°W longitude. The abyssal hills are similar to features located along flow lines of sea-floor spreading near the crest of the Mid-Atlantic Ridge. This similarity indicates a primary origin for these abyssal hills related to axial processes at a mid-oceanic ridge involving construction (igneous) and tectonics (faulting), and secondary modification by volcanic activity.  相似文献   

15.
Recent multibeam bathymetric and geophysical data recorded in the West Philippine Basin, east of Taiwan, reveal new information on the structure and the tectonic origin of the oceanic Gagua Ridge. This linear, 300 km-long, 4 km-high, north-south-trending ridge, is being subducted beneath the Ryukyu Trench along 123° E. This basement high separates two basins of different ages. Its summit is marked by two crests and an axial valley. A map of the basement top shows the region of the ridge to be composed of a set of linear and parallel ridges and troughs. All these elements suggest that the development of the ridge, and its surroundings, has been influenced by strike-slip deformation. Nevertheless, the height of the ridge indicates also an important compressive component in the deformation. Gravity models across the ridge show local compensation with a crustal root, indicating that an overthickening of the crust occurred when it was young and thus more easily deformable. This idea is strengthened with flexural modeling of the lithosphere that bends under the load of the ridge, indeed it indicates that the high probably formed when the underlying lithosphere was young. We interpret the Gagua Ridge as a fracture zone transverse ridge uplifted during a transpressive episode along a north-south -trending fracture zone in the middle Eocene time, if we accept Hilde and Lee's (1984) model of magnetic lineations. This tectonic event could be contemporaneous with a change of the pole of rotation of the West Philippine Basin which occurred about 43/45 Ma ago.  相似文献   

16.
Seismic reflection profiles from the equatorial Atlantic off Africa between 12°N and 1°N reveal remarkably widespread deformation of oceanic sediments in an area lacking teleseismic activity. Uplift of abyssal plain sequences has occurred along the eastern extensions of large-offset fracture zones on the Mid-Atlantic Ridge. Between the major transforms pervasive deformation is imaged in the sedimentary column. Diapirism and faulting may have been associated with extensive fluid migration and sediment mobilization. The deformation occurred during the late Cenozoic and was probably related to reactivation of Cretaceous transforms.  相似文献   

17.
The Seram Trough is located in the northern part of the Banda Arc-Australian collision zone in eastern Indonesia and is currently the site of contraction between the Bird's Head of New Guinea and Seram Island. It has been interpreted as a subduction trench, an intra-continental thrust zone and foredeep, and a zone of strike-slip faulting. Recently acquired 2D seismic lines clarify its tectonic evolution and relationship to the Bird's Head. Folding in the Early Pliocene formed an anticlinorium running from Misool to the Onin Peninsula of Irian Jaya and produced a newly recognised angular unconformity. The unconformity truncates sediments as old as Middle Jurassic and is an ancient topographic surface with significant relief. It was later folded and now dips south towards the trough where it is covered by up to 3 km of sediments. Initial tilting of the unconformity surface was accompanied by deposition of a transgressive sequence which can be traced into the trough. This is overlain by two sequences which prograde towards the trough. These sequences show progressive rotation of the unconformity surface, gravitational displacement of sediments into the trough, and thrusting which continues to the present day. Contraction occurred in the trough after the Early Pliocene and is younger than the previously suggested Late Miocene age. Thrust faults in the trough deform sediments deposited above the unconformity and detach at the unconformity surface. On Seram thrust faults repeat Mesozoic–Miocene sequences and probably detach at their contact with metamorphic basement. The detachment surface must cut through the Mesozoic-Miocene sequence between Seram and the trough. This work suggests the Seram Trough is not a subduction trench but a foredeep produced in response to loading by the developing fold and thrust belt of Seram, with an associated peripheral bulge to the north. The Seram Trough is interpreted to be a very young zone of thrusting within the Australian continental margin.  相似文献   

18.
Bowers Swell is a newly discovered bathymetric feature which is up to 90 m high, between 12 and 20 km wide, and which extends arcuately about 400 km along the northern and eastern sides of Bowers Ridge. The swell was first revealed on GLORIA sonographs and subsequently mapped on seismic reflection and 3.5 kHz bathymetric profiles. These geophysical data show that the swell caps an arcuate anticlinal ridge, which is composed of deformed strata in an ancient trench on the northern and eastern sides of Bowers Ridge. The trench fill beneath the swell is actively deforming, as shown by faulting of the sea floor and by thinning of the strata across the crest of the swell. Thinning and faulting of the trench strata preclude an origin for the swell by simple sediment draping over an older basement high. We considered several models for the origin of Bowers Swell, including folding and uplift of the underlying trench sediment during the interaction between the Pacific plate beneath the Aleutian Ridge and a remnant oceanic slab beneath Bowers Ridge. However, such plate motions should generate extensive seismicity beneath Bowers Ridge, which is aseismic, and refraction data do not show any remnant slab beneath Bowers Ridge. Another origin considered for Bowers Swell invokes sediment deformation resulting from differential loading and diapirism in the trench fill. However, diapirism is not evident on seismic reflection profiles across the swell. We favour a model in which sediment deformation and swell formation resulted from a few tens of kilometers of low seismicity motion by intraplate crustal blocks beneath the Aleutian Basin. This motion may result from the translation of blocks in western Alaska to the south-west, forcing the movement of the Bering Sea margin west of Alaska into the abyssal Aleutian Basin.  相似文献   

19.
The Gagua Ridge, carried by the Philippine Sea Plate, is subducting obliquely beneath the southernmost Ryukyu Margin. Bathymetric swath-mapping, performed during the ACT survey (Active Collision in Taiwan), indicates that, due to the high obliquity of plate convergence, slip partitioning occurs within the Ryukyu accretionary wedge. A transcurrent fault, trending N95° E, is observed at the rear of the accretionary wedge. Evidence of right lateral motion along this shear zone, called the Yaeyama Fault, suggests that it accommodates part of the lateral component of the oblique convergence. The subduction of the ridge disturbs this tectonic setting and significantly deforms the Ryukyu Margin. The ridge strongly indents the front of the accretionary wedge and uplifts part of the forearc basin. In the frontal part of the margin, directly in the axis of the ridge, localized transpressive and transtensional structures can be observed superimposed on the uplifted accretionary complex. As shown by sandbox experiments, these N330° E to N30° E trending fractures result from the increasing compressional stress induced by the subduction of the ridge. Analog experiments have also shown that the reentrant associated with oblique ridge subduction exhibits a specific shape that can be correlated with the relative plate motion azimuth.These data, together with the study of the margin deformation, the uplift of the forearc basin and geodetic data, show that the subduction of the Gagua Ridge beneath the accretionary wedge occurs along an azimuth which is about 20° less oblique than the convergence between the PSP and the Ryukyu Arc. Taking into account the opening of the Okinawa backarc basin and partitioning at the rear of the accretionary wedge, convergence between the ridge and the overriding accretionary wedge appears to be close to N345° E and thus, occurs at a rate close to 9 cm yr–1. As a result, we estimate that a motion of 3.7 cm yr–1±0.7 cm should be absorbed along the transcurrent fault. Based on these assumptions, the plate tectonic reconstruction reveals that the subducted segment of the Gagua Ridge, associated with the observable margin deformations, could have started subducting less than 1 m.y. ago.  相似文献   

20.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号