首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microscopic melt inclusions found in magmatic minerals are undoubtedly one of the most important sources of information on the chemical composition of melts. This paper reports on the successful application of near-infrared (NIR) femtosecond laser ablation (LA) - inductively coupled plasma-mass spectrometry to in situ determination of incompatible trace elements (Li, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Ta, Th, U) and ore metals (As, Mo, Pb) in individual melt inclusions hosted in quartz from the Mount Pinatubo dacites, Philippines. The determined elements cover a concentration range of five orders of magnitude. Femtosecond LA-ICP-MS analyses of twenty-eight individual melt inclusions demonstrate the efficiency of the microanalytical technique and suggests a spectacular homogeneity of the entrapped melt, at least with respect to the following incompatible trace elements: Rb, Sr, Nb, Cs, Ba, La, Ce, Pr, Nd, Pb, Th. The analytical precision (1s) for Na, Ca, Rb, Sr, Y, Nb, Ba and LREE ranged from 3 to 20%. Comparison of trace element concentrations in Mt. Pinatubo melt inclusions determined by femtosecond LA-ICP-MS with those of melt inclusions previously analysed by secondary ion mass spectrometry analysis (SIMS) and those of matrix glasses previously determined by nanosecond LA-ICP-MS showed an agreement typically within 30–40%. The homogeneity of trace element concentrations of the Mt. Pinatubo melt inclusions and the matrix glasses is consistent with the melt inclusion origin as homogeneous rhyolitic melt that was trapped in quartz phenocrysts at the final crystallisation stages of the host adakite (dacite) magma.  相似文献   

2.
Quantitative microanalysis of entire silicate and sulfide melt inclusions by Excimer Laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICPMS) has been applied to extrusive and shallow intrusive rocks from the andesitic Farallón Negro Volcanic Complex (northwestern Argentina). Silicate melts are trapped in pyroxene, amphibole, plagioclase and quartz, and sulfide melts are trapped in amphibole. Details of the analytical approach and the quantification procedure are given and the results are evaluated to test the accuracy of the technique and the validity of the interpretation of analytical signals. Similar compositions of silicate melt inclusions trapped in truly co-precipitating minerals show that the quantification approach of melt inclusion compositions from LA-ICPMS signals through an internal standard is valid. This correspondence also shows that melt inclusions investigated in this study are not significantly influenced by the boundary layer around a growing crystal or by post-entrapment modifications. Post-entrapment diffusive re-equilibration only affected the Fe and Mg content of melt inclusions in mafic phases. Thus, melt inclusions are representative samples of the melt from which the host mineral crystallized, with regard to most major and trace elements. Sulfide melt inclusions (present as pyrrhotite with exsolution of Au and Cu in phases separated during cooling) were analyzed for their bulk Fe, Cu and Au content, and the abundance of these elements was quantified using a silicate glass as external standard. The validity of this calibration was tested by comparing electron microprobe analyses of Fe, Cu, Ni and Co in homogeneous sulfide minerals with LA-ICPMS results. Identical results within calculated uncertainty (one standard deviation of five to nine analyses, mostly between 1 and 5 wt% RSD) demonstrate that for these elements, measured element ratios are independent of the matrix using our analytical setup.Editorial responsibility: T.L. Grove  相似文献   

3.
范宏瑞  李兴辉  左亚彬  陈蕾  刘尚  胡芳芳  冯凯 《岩石学报》2018,34(12):3479-3496
硫化物微区原位分析技术包括LA-ICPMS定点微量元素分析、LA-ICPMS和(Nano) SIMS微量元素面扫描分析,以及SIMS、Nano SIMS和LA-MC-ICPMS原位硫同位素点分析和面扫描。这些分析方法可以有效地获取不同期次硫化物微量元素含量、丰度分布图像、硫同位素比值和分布特征,结合微区时间分辨信号谱图、微量元素相关性分析等,在矿床学的成矿元素行为与赋存状态、成矿元素置换反应、成矿流体与硫的来源、矿石矿物的化学分带性、矿床成因模型等研究中有着重要的应用前景,以探讨矿床的精细成矿过程。硫化物原位微量元素和同位素LA-(MC)-ICPMS和(Nano) SIMS分析,需要降低仪器和分析方法的系统误差,克服严重的基体效应和同位素分馏效应。  相似文献   

4.
We present a new approach to determine the composition of silicate melt inclusions (SMI) using LA-ICPMS. In this study, we take advantage of the occurrence of SMI in co-precipitated mineral phases to quantify their composition without depending on additional sources of information. Quantitative SMI analyses are obtained by assuming that the ratio of selected elements in SMI trapped in different phases are identical. In addition Fe/Mg exchange equilibrium between olivine and melt was successfully used to quantify LA-ICPMS analyses of SMI in olivine. Results show that compositions of SMI from the different host minerals are identical within their uncertainty. Thus (1) the quantification approach is valid; (2) analyses are not affected by the composition of the host phase; (3) the derived melt compositions are representative of the original melt, excluding significant syn- or postentrapment modification such as boundary layer effects or diffusive reequilibration with the host mineral. With this data we established a large dataset of mineral/melt partition coefficients for the investigated mineral phases in hydrous calc-alkaline basaltic-andesitic melts. The clinopyroxene/melt and plagioclase/melt partition coefficients are consistent with the lattice strain model of Blundy and Wood [Blundy, J., Wood B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature372, 452-454].  相似文献   

5.
Exsolution (unmixing) of the volatile element-rich phases from cooling and crystallising silicate magmas is critical for element transport from the Earth’s interior into the atmosphere, hydrosphere, crustal hydrothermal systems, and the formation of orthomagmatic ore deposits. Unmixing is an inherently fugitive phenomenon and melt inclusions (droplets of melt trapped by minerals) provide robust evidence of this process. In this study, melt inclusions in phenocrystic and miarolitic quartz were studied to better understand immiscibility in the final stages of cooling of, and volatile exsolution from, granitic magmas, using the tin-bearing Omsukchan Granite (NE Russia) as an example.

Primary magmatic inclusions in quartz phenocrysts demonstrate the coexistence of silicate melt and magma-derived Cl-rich fluids (brine and vapour), and emulsions of these, during crystallisation of the granite magma. Microthermometric experiments, in conjunction with PIXE and other analytical techniques, disclose extreme heterogeneity in the composition of the non-silicate phases, even in fluid globules within the same silicate melt inclusion. We suggest that the observed variability is a consequence of strong chemical heterogeneity in the residual silicate-melt/brine/vapour system on a local scale, owing to crystallisation, immiscibility and failure of individual phases to re-equilibrate. The possible evolution of non-silicate volatile magmatic phases into more typical “hydrothermal” chloride solutions was examined using inclusions in quartz from associated miarolitic cavities.  相似文献   


6.
7.
Silicate-melt inclusions in magmatic rocks: applications to petrology   总被引:20,自引:0,他引:20  
Maria-Luce Frezzotti   《Lithos》2001,55(1-4):273-299
Silicate-melt inclusions in igneous rocks provide important information on the composition and evolution of magmatic systems. Such inclusions represent accidentally trapped silicate melt (±immiscible H2O and/or CO2 fluids) that allow one to follow the evolution of magmas through snapshots, corresponding to specific evolution steps. This information is available on condition that they remained isolated from the enclosing magma after their entrapment. The following steps of investigation are discussed: (a) detailed petrographic studies to characterise silicate-melt inclusion primary characters and posttrapping evolution, including melt crystallisation; (b) high temperature studies to rehomogenise the inclusion content and select chemically representative inclusions: chemical compositions should be compared to relevant phase diagrams.

Silicate-melt inclusion studies allow us to concentrate on specific topics; inclusion studies in early crystallising phases allow the characterisation of primary magmas, while in more differentiated rocks, they unravel the subsequent chemical evolution. The distribution of volatile species (i.e., H2O, CO2, S, Cl) in inclusion glass can provide information on the degassing processes and on recycling of subducted material. In intrusive rocks, silicate melt inclusions may preserve direct evidence of magmatic stage evolution (e.g., immiscibility phenomena). Melt inclusions in mantle xenoliths indicate that high-silica melts can coexist with mantle peridotites and give information on the presence of carbonate melt within the upper mantle. Thus, combining silicate-melt inclusion data with conventional petrological and geochemical information and experimental petrology can increase our ability to model magmatic processes.  相似文献   


8.
玄武岩斑晶中熔体包裹体成分特征可以推断玄武岩源区物质组成,反映岩浆形成演化过程。利用LA—ICPMS对四合屯义县组玄武岩橄榄石、单斜辉石斑晶中单个熔体包裹体的元素组成进行了分析测试。研究结果表明,橄榄石、单斜辉石斑晶中的熔体包裹体在主、微量元素含量上表现出了比全岩更大的变化范围,但微量元素分配特征总体和全岩一致。单斜辉石斑晶中包裹体的CaO含量、CaO/Al2O3比值和Cr2O3含量随着单斜辉石Mg#值的降低而降低,反映了单斜辉石结晶分离的影响,Al2O3与Sr之间的显著相关关系则记录了斜长石结晶分离作用的影响,MgO—Ni和MgO—CaO/Al2O3的变化则反映了橄榄石的分离结晶作用。包裹体元素组成变化总体受橄榄石、单斜辉石和斜长石的结晶分离作用控制。结合前人研究成果,认为四合屯玄武岩在微量元素和同位素组成上的壳源组分特征可能部分地继承自原岩(即橄榄岩+榴辉岩部分熔融体反应形成的(橄榄)辉石岩),而不是岩浆上升过程中受地壳岩石混染的结果。高Mg#值单斜辉石斑晶中少量高Mg馆、高Si含量,低CaO、TiO2、Al2O3和微量元素含量的熔体包裹体反映玄武岩浆上升过程中受到了S1质岩石的混染,这与义县组玄武岩下伏地层为长城系大红裕组石英岩、石英砂岩的地质特征一致。因此,高Fo橄榄石斑晶中的熔体包裹体比采用向全岩中简单添加橄榄石方式计算出的原始熔体可能更能真实反映原始熔体组成。  相似文献   

9.
Partitioning behavior of Sc, Ti, V, Mn, Sr, Y, Zr, Nb, Ba, La, Nd, Sm, Eu, Gd, Dy, Ho, Yb, Hf, and Pb between dacitic silicate melt and clinopyroxene, orthopyroxene, and plagioclase has been determined based on laser ablation-inductively coupled plasma mass spectrometric (LA-ICPMS) analysis of melt inclusions and the immediately adjacent host mineral. Samples from the 1988 eruption of White Island, New Zealand were selected because petrographic evidence suggests that all three mineral phases are in equilibrium with each other and with the melt inclusions. All three phenocryst types are found as mineral inclusions within each of the other phases, and mineral inclusions often coexist with melt inclusions in growth-zone assemblages. Compositions of melt inclusions do not vary between the different host minerals, suggesting that boundary layer processes did not affect compositions of melt inclusions and that post-trapping modifications have not occurred.Partition coefficients were calculated from the host and melt inclusion compositions and results were compared to published values. All trace elements examined in this study except Sr are incompatible in plagioclase, and all measured trace elements except for Mn are incompatible in orthopyroxene. In clinopyroxene, Sc, V, and Mn are compatible, and Y, Ti, HREE, and the MREE are only slightly incompatible. Most partition coefficients overlap the wide range of values reported in the literature, but the White Island data are consistently at the lower end of the range in published values. Results from the literature obtained using modern microanalytical techniques such as secondary ion mass spectrometry (SIMS) or proton induced X-ray emission spectroscopy (PIXE) also fall at the lower end of the published values, whereas partition coefficients determined from bulk analysis of glass and crystals separated from volcanic rocks typically extend to higher values. Rapid crystal growth-rates, crystal zonation, or the presence of accessory mineral inclusions in phenocrysts likely accounts for the wide range and generally higher partition coefficients obtained using bulk sampling techniques. The results for 3+ cations from this study are consistent with theoretical predictions based on a lattice strain model for site occupancy. The results also confirm that the melt inclusion-mineral (MIM) technique is a reliable method for determining partition coefficients, as long as the melt inclusions have not experienced post-entrapment reequilibration.  相似文献   

10.
Summary Melt inclusions in olivine and apatite, and REE distribution of apatite were studied in one of the least differentiated members of the oldest alkaline succession of Mt. Etna. Apatite occurs both as microphenocrysts and as inclusions in olivine crystals, even in the most Mg-rich ones (Fo82). In addition phenocrysts and groundmass are composed of plagioclase, clinopyroxene, olivine and magnetite. Apatite is fluor-apatite, with rather homogeneous major element (measured by electron microprobe, EMP) and REE (measured by laser-ablation microprobe, LAM, and by secondary ion mass spectrometer, SIMS) contents. REE are enriched when compared to the whole rock, with contents in olivine-hosted apatite lower than or the same as those of the microphenocryst cores; these in turn show lower REE values than their edges. Distribution coefficients, calculated from LAM data of microphenocryst edges and whole rock analyses, are higher for LREE (8–12) than for HREE (5–4). In the SiO2 vs. P2O5 diagram melt inclusions and whole rock samples define a trend that is consistent with continuous apatite extraction from a “high P” basalt magma. Finally, whole rock data show LREE/HREE (La/Lu)n enrichment ratios from hawaiites to mugearites (=1.14), consistent with apatite fractionation, lower than those documented for lavas of the “low P” type (enrichment ratio = 1.34–1.37), where conditions for apatite saturation were not established. Received January 2, 2000; revised version accepted April 2, 2001  相似文献   

11.
Application of the Linkam TS1400XY heating stage to melt inclusion studies   总被引:1,自引:0,他引:1  
Melt inclusions (MI) trapped in igneous phenocrysts provide one of the best tools available for characterizing magmatic processes. Some MI experience post-entrapment modifications, including crystallization of material on the walls, formation of a vapor bubble containing volatiles originally dissolved in the melt, or partial to complete crystallization of the melt. In these cases, laboratory heating may be necessary to return the MI to its original homogeneous melt state, followed by rapid quenching of the melt to produce a homogeneous glass phase, before microanalyses can be undertaken. Here we describe a series of heating experiments that have been performed on crystallized MI hosted in olivine, clinopyroxene and quartz phenocrysts, using the Linkam TS1400XY microscope heating stage. During the experiments, we have recorded the melting behaviors of the MI up to a maximum temperature of 1360°C. In most of the experiments, the MI were homogenized completely (without crystals or bubbles) and remained homogeneous during quenching to room temperature. The resulting single phase MI contained a homogeneous glass phase. These tests demonstrate the applicability of the Linkam TS1400XY microscope heating stage to homogenize and quench MI to produce homogeneous glasses that can be analyzed with various techniques such as Electron Microprobe (EMP), Secondary Ion Mass Spectrometry (SIMS), Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS), Raman spectroscopy, FTIR spectroscopy, etc. During heating experiments, the optical quality varied greatly between samples and was a function of not only the temperature of observation, but also on the amount of matrix glass attached to the phenocryst, the presence of other MI in the sample which are connected to the outside of the crystal, and the existence of mineral inclusions in the host.  相似文献   

12.
To determine the pre-eruptive composition of peralkaline magma at Frantale volcano, Ethiopia, we have studied glass inclusions in phenocrysts from a lateceupting, glassy pantelleritic lava flow. Matrix glass and crystal-free glass inclusions in quartz were analyzed for all major and most minor elements by electron microprobe and for H2O and 15 lithophile trace elements by ion microprobe (SIMS). Compositions of inclusions may have been slightly modified by post-trapping quartz crystallization, the average concentrations of all constituents but silica may be artificially high by 10% relative. Glass inclusions contain extreme enrichments in H2O (mean of 4.6 to 4.9 wt%) and several lithophile trace elements, which suggest that the lava erupted from a highly evolved, water-rich fraction of magma. The pre-eruptive concentration of water was much higher than that generally considered to occur in pantellerite magmas. Trends observed for lithophile elements in whole-rock samples from pre-,syn-and post-caldera eruptive units are mimicked in glass inclusions from the studied pantellerite lava; concentrations of Rb, Y, Zr, Nb, and Ce±Cl increase with progressive differentiation. With the exception of Cl and H2O contents, the composition of matrix glass is similar to that of glass inclusions suggesting: that few constituents exsolved from magma or cooling glass; eruption and quench of the lava occurred rapidly; and the matrix glass is, largely, compositionally representative of melt. Higher average abundances of Cl and H2O in glass inclusions suggest that these volatiles exsolved after melt entrapment; degassing could have occurred as either an equilibrium or disequilibrium process.  相似文献   

13.
单个流体包裹体LA-ICPMS定量分析技术及其应用(英文)   总被引:7,自引:0,他引:7  
ThomasULRICH 《地学前缘》2003,10(2):379-393
对于不同类型的地球化学勘查样品 ,运用恰当的分析方法处理 ,是成功地发现矿床的关键。激光熔融电感耦合等离子质谱分析 ,即LA ICPMS ,是功能最强的多元素分析技术之一。该方法获得数据快捷 ,样品制备简单 ,其高灵敏度为很多主元素和微量元素 (包括铂族元素、稀土元素、高场强元素和多种成矿示踪元素 )提供了低检测限 ,正在并将要持续为地球化学应用提供新的信息。仪器由ICPMS(四极 ,多接受或磁扇域 )附加激光器 (紫外或红外波长 )而构成。应用于地球科学研究的标准仪器的激光器为具有 2 6 6nm四倍频率的Nd :YAG激光器 ,或者是具有 193nm波长的ArF激态原子激光器。激光器熔融样品 ,并通过运载气体将熔融的样品物质传送到IP ,而不是将样品溶解后 ,通过雾化器和雾化室将样品传输给ICP。这就使我们能够进行微区分析 ,如矿物环带 ,或者矿物中的微小矿物、融体和流体包裹体等。运用外标校对元素比值 ,并结合内标使用 ,可以获得定量测试结果。对于固体熔融物的分析精度一般为 2 %~ 5 %RSD(相对标准误差 ) ,对于流体包裹体则为 10 %~ 30 %RSD。LA ICPMS的一些复杂系统可能引起成分分馏和质量干扰。对于分馏效应 ,可以通过运用产生小粒子的短波长激光器和运用He作为运载气体来减小 ;对于质量干扰 ,则可以通过?  相似文献   

14.
W. Ting  A. H. Rankin  A. R. Woolley 《Lithos》1994,31(3-4):177-187
Many solid inclusions occur in apatite of the Sukulu carbonatite, Uganda, of which the most abundant are carbonate, which can be classified into clear (Mg-calcite) and pitted (calcite) inclusions based on their morphology, texture and chemical composition. Although such solid inclusions are ubiquitous in carbonatite apatite and have been described by many workers, this study provides new insight into their genesis and petrogenetic significance.

The pitted inclusions commonly have elongate or spherical shapes and are spatially related to microfractures in the apatite host. They probably developed from early primary aqueous or Mg-calcite solid inclusions by infiltration of post-magmatic fluids through the microfractures. The clear inclusions generally have spheroidal shapes and are thought to represent an early magmatic phase and to be typically magmatic in origin.

Electron microprobe analysis indicates that the clear inclusions contain > 1.6 wt.% MgO and the pitted ones <0.5 wt.% MgO. The FeO content also differs, the clear inclusions containing about twice as much FeO as the pitted ones. Heating experiments suggest that some of the clear inclusions must be representative of crystals precipitated at high temperature ( > 1100°C) prior to apatite formation. In contrast, other clear inclusions became dark or brownish and remarkably homogeneous on heating at relatively moderate temperatures (740–912°C) indicating that they may represent true melt inclusions trapped as melts during apatite growth.

The present findings clearly illustrate the importance of both magmatic and post-magmatic processes in the genesis of the carbonate of the Sukulu carbonatite complex. They also suggest that extensive post-magmatic processes are likely to have been responsible for development of the low Mg-calcite and associated dolomite which dominate the sovites of this complex.  相似文献   


15.
The mineralized sublayer at the base of the Sudbury Igneous Complex (SIC) consists of two variants, the noritic contact sublayer and radial and concentric quartz dioritic offset dykes. Both are characterized by the presence of significant quantities of Ni–Cu–PGE sulphides and by a prominent population of recrystallized diabasic-textured and melanocratic to ultramafic fragments. The two variants of the sublayer contain compositionally distinct inclusion populations and inclusion-bearing matrices. Contact sublayer and offset dykes hosted by north range granitoid footwall can be distinguished from those hosted by south range basaltic and metasedimentary footwall environments. The compositional variation in SIC rocks can be described in terms of contributions from exposed crustal rocks and differentiation of the resultant melt(s).

The basaltic inclusion population is characterized by hornfels recrystallization of the plagioclase, and is geochemically and isotopically identified with Huronian basalts which comprise the south range footwall, with (Ce/Yb)N ratios of around 2.5 and Nd1850 between −2 to −5. The melanocratic inclusions in the sublayer are typically coarse-grained and undeformed, with incompatible element contents and radiogenic isotopic compositions intermediate between those of the basaltic inclusions and those of the melt sheet, which has (Ce/Yb)N ratios of around 10 and Nd1850 around −9. Calculated crystallization models are consistent with derivation of the ultramafic inclusions by crystallization from a magma produced by mixing of molten basaltic footwall with basal melt sheet. It is proposed that the sublayer appeared as the marginal facies of a meteorite impact melt sheet as a result of footwall melting following the impact. This basal layer was progressively enriched in sulphides and mafic cumulates from above through differentiation during cooling. Offset dykes were emplaced and the magmas effectively removed from the system. Subsequently, continued evolution of the marginal facies produced the more mafic inclusions in the contact sublayer. No extracrustal (e.g., mantle) component is envisioned in this model to explain the silicate compositional distributions in the SIC, and mafic crustal rocks in the target zone are implicated as the metal source for the SIC deposits.  相似文献   


16.
The fluorine concentration in NIST SRM 610 was determined by SIMS to be 295 16 μg g−1 (5.40% relative standard deviation). Accuracy of the measurement was determined from a calibration involving the synthesis of glass calibration samples doped with varying concentrations of fluorine and characterized by electron microprobe analysis and SIMS. The calibration was accurate to about 5%. Multiple analyses of the calibration samples and SRM 610 in three different analytical sessions combine to produce a low relative standard deviation of the mean (0.23% RSD) in the mean fluorine value for SRM 610. Analytical uncertainty in the fluorine value was 5.40% (RSD), originating from a combination of calibration and ion counting uncertainties as determined from multiple analyses. Evaluation of the SIMS technique using the new fluorine value in SRM 610 shows that this element can be determined with a precision and accuracy superior to that of EPMA. Measurements of fluorine in igneous and hydrothermal zircon suggest that F-ligands may have been responsible for Zr transportation in hydrothermal fluids also responsible for W-Au mineralisation. Other applications for low-level fluorine determinations may include melt inclusions and nominally anhydrous mineral phases, particularly mantle phases.  相似文献   

17.
运用电子探针测定了云南哀牢山伟晶岩和新疆可可 托海伟晶岩矿物中熔融包裹体及流体-熔融包裹体子矿物成分。据73个包裹体中120个测 点分 析结果,鉴定出锌尖晶石、刚玉、磷灰石、磁铁矿、白云母、黑云母、钾长石、钠长石、绿 柱石和石英等10种 子矿物,并确定矿物组合27个。其中锌尖晶石、刚玉在两地区伟晶岩熔融包裹体中属首次发 现,磷灰石成分属首次测定。两地伟晶岩矿物的熔融及流体-熔融包裹体中子 矿 物成分及矿物组合各异,包裹体中子矿物与主矿物的化学成分存在一定演化规律,可作为了 解伟晶岩浆结晶分异作用、元素演化规律的依据。研究表明,伟晶岩存在局部岩浆分异作 用,岩浆具不混溶性及非均匀性。此成果对了解伟晶岩物质成分、形成机制及成因研究具重 要意义。对岩浆岩、地幔岩及陨石研究也有一定启迪。  相似文献   

18.
《Geochimica et cosmochimica acta》1999,63(13-14):2123-2143
The Weekeroo Station IIE iron meteorite contains a variety of felsic and mafic inclusions enclosed in an FeNi-metal host. Petrographic, EMP, and SIMS data suggest that the petrogenesis of the silicates was complex, and included differentiation, remelting, FeO-reduction, and dynamic mixing of phases.Differentiation produced a variety of olivine-free inclusion assemblages, ranging from pyroxene + plagioclase + tridymite with peritectic compositions, to coarse orthopyroxene, to plagioclase + tridymite and its glassy equivalent. Individual phases have similar trace-element abundances and patterns, despite large variations in inclusion textures, modes, and bulk compositions, probably as a result of mechanical separation of pre-existing phases in an impact event that dynamically mixed silicates with the metallic host. Trace-element data imply that augite and plagioclase grains in different inclusions crystallized from the same precursor melt, characterized by relatively unfractionated REE abundances of ∼20–30 × CI-chondrites except for a negative Eu anomaly. Such a precursor melt could have been produced by ∼2–5% equilibrium partial melting of an H-chondrite silicate protolith, or by higher degrees of partial melting involving subsequent fractional crystallization. Glass appears to have formed by the remelting of pre-existing plagioclase and orthopyroxene, in a process that involved either disequilibrium or substantial melting of these phases. During remelting, silicate melt reacted with the FeNi-metal host, and FeO was reduced to Fe-metal. Following remelting and metal-silicate mixing, inclusions apparently cooled at different rates in a near-surface setting on the parent body; glass- or pigeonite-bearing inclusions cooled more rapidly (≥2.5°C/hr between 1000–850°C) than pigeonite-free, largely crystalline inclusions.The results of this study point to two likely models for forming IIE iron meteorites, both involving collision between an FeNi-metal impactor and either a differentiated or undifferentiated silicate-rich target of H-chondrite affinity. Each model has difficulties and it is possible that both are required to explain the diverse IIE group.  相似文献   

19.
Recent petrological studies indicate that some crustal magma chambers may be built up slowly by the intermittent ascent and amalgamation of small packets of magma generated in a deep-seated source region. Despite having little effect on whole-rock compositions, this process should be detectable as variable melt trace element composition, preserved as melt inclusions trapped in phenocrysts. We studied trace element and H2O contents of plagioclase- and hornblende-hosted melt inclusions from andesite lavas and pumices of Shiveluch Volcano, Kamchatka. Melt inclusions are significantly more evolved than the whole rocks, indicating that the whole rocks contain a significant proportion of recycled foreign material. H2O concentrations indicate trapping at a wide range of pressures, consistent with shallow decompression-driven crystallisation. The variation of trace element concentrations indicates up to ∼30% decompression crystallisation, which accounts for crystallisation of the groundmass and rims on phenocrysts. Trace element scatter could be explained by episodic stalling during shallow magma ascent, allowing incompatible element concentrations to increase during isobaric crystallisation. Enrichment of Li at intermediate pH2O reflects influx and condensation of metal-rich vapours. A set of “exotic melts”, identified by their anomalous incompatible trace element characteristics, indicate variable source chemistry. This is consistent with evolution of individual magma batches with small differences in trace element chemistry, and intermittent ascent of magma pulses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号