首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
中国亚热带丘陵山区植被沿海拔梯度分布格局(英文)   总被引:3,自引:0,他引:3  
Knowledge of vegetation distribution patterns is very important.Their relationships with topography and climate were explored through a geographically weighted regression(GWR) framework in a subtropical mountainous and hilly region,Minjiang River Basin of Fujian in China.The HJ-1 satellite image acquired on December 9,2010 was utilized and NDVI index was calculated representing the range of vegetation greenness.Proper analysis units were achieved through segregation based on small sub-basins and altitudinal bands.Results indicated that the GWR model was more powerful than ordinary linear least square(OLS) regression in interpreting vegetation-environmental relationship,indicated by higher adjusted R 2 and lower Akaike information criterion values.On one side,the OLS analysis revealed dominant positive influence from parameters of elevation and slope on vegetation distribution.On the other side,GWR analysis indicated that spatially,the parameters of topography had a very complex relationship with the vegetation distribution,as results of the various combinations of environmental factors,vegetation composition and also anthropogenic impact.The influences of elevation and slope generally decreased,from strongly positive to nearly zero,with increasing altitude and slope.Specially,most rapid changes of coefficients between NDVI and elevation or slope were observed in relatively flat and low-lying areas.This paper confirmed that the non-stationary analysis through the framework of GWR could lead to a better understanding of vegetation distribution in subtropical mountainous and hilly region.It was hoped that the proposed scale selection method combined with GWR framework would provide some guidelines on dealing with both spatial(horizontal) and altitudinal(vertical) non-stationarity in the dataset,and it could easily be applied in characterizing vegetation distribution patterns in other mountainous and hilly river basins and related research.  相似文献   

2.
中国省域犯罪率影响因素的空间非平稳性分析   总被引:4,自引:2,他引:2  
严小兵 《地理科学进展》2013,32(7):1159-1166
收入差距和流动人口是影响犯罪率的两个重要因素, 以往研究基于OLS模型, 在假设地域空间为均质的前提下分析其对犯罪率的影响, 但现实世界的空间单元往往难以满足“均质”的假设, 多数表现为“空间异质”。以OLS计量空间异质会造成计量结果出现偏差, 同时无法了解不同空间单元的不同影响。而地理加权回归模型通过将空间结构嵌入线性回归模型中, 很好的解决了空间异质的计量问题。利用地理加权回归模型研究2008 年中国大陆省域单元犯罪率的影响因素, 结果表明:① 犯罪率的影响因素表现出空间非平稳性, 流动人口与犯罪率显著相关, 但各个省份相关程度并不相同, 影响关系随空间位置变化而变化;② 地理加权回归模型的计量精度和拟合度比OLS模型有大幅提高  相似文献   

3.
王新刚  孔云峰 《地理科学》2015,35(5):615-621
针对地理加权回归(GWR)模型不能有效处理样本数据空间自相关性这一问题,构造局部时空窗口统计量,尝试改进时空加权回归(GTWR)模型。定义多时空窗口的概念,给出其选取、计算和验证方法;计算时空窗口包含的各样本点的被解释变量平均值,与样本拟合点的被解释变量值的比值,作为新的解释变量,构建改进的时空加权回归(IGTWR)模型。以土地稀缺、多中心、资源型城市——湖北省黄石市为例,收集2007~2012年商品住宅成交价格1.93万个数据和398个楼栋样本点,选取小区等级、绿化率、楼栋总层数、容积率、距区域中心距离和销售年份6个解释变量,分别利用常规线性回归(OLS)、GWR、GTWR和IGTWR方法进行回归分析。模型结果表明:计算Moran’s I指数和分析时间序列的自相关性,能确定时空窗口的大小和数量的选取;IGTWR模型和各变量的回归统计均通过0.05的显著性水平检验,有关解释变量的系数估计值在空间分布上能合理解释;GWR拟合结果优于OLS,GTWR优于GWR,而IGTWR拟合精度最好。与GTWR模型分析相比, IGTWR模型R2从0.877提升到0.919,而AICc、残差方(RSS)和均方差(MSE)分别从6 226、49 996 201和354.427下降到6 206、32 327 472和284.969。案例研究表明:IGTWR能够表达一定时空范围的时空自相关特征,减小了估计误差,提高了回归拟合精度。  相似文献   

4.
Statistical tests for whether some coefficients really vary over space play an important role in using the geographically weighted regression (GWR) to explore spatial non-stationarity of the regression relationship. In view of some shortcomings of the existing inferential methods, we propose a residual-based bootstrap test to detect the constant coefficients in a GWR model. The proposed test is free of the assumption that the model error term is normally distributed and admits some useful extensions for identifying more complicated spatial patterns of the coefficients. Some simulation with comparison to the existing test methods is conducted to assess the test performance, including the accuracy of the bootstrap approximation to the null distribution of the test statistic, the power in identifying spatially varying coefficients and the robustness to collinearity among the explanatory variables. The simulation results demonstrate that the bootstrap test works quite well. Furthermore, a real-world data set is analyzed to illustrate the application of the proposed test.  相似文献   

5.
基于安徽省140个采样点的土壤pH数据,综合考虑土壤、地形、气候、生物等因子对土壤pH的影响,采用地理加权回归(Geographically Weighted Regression, GWR)、主成分地理加权回归(Principal Component Geographically Weighted Regression, PCA-GWR)和混合地理加权回归(Mixed Geographically Weighted Regression, M-GWR)3种模型对安徽省土壤pH空间分布进行建模预测,揭示环境因子对土壤pH的影响在空间上的差异,最后以多元线性回归模型(Multiple Linear Regression, MLR)为基准比较3种GWR模型的精度。研究表明:(1)安徽省土壤pH具有空间异质性,且集聚特征明显。(2) 3种GWR模型中M-GWR模型略优,GWR、PCA-GWR和M-GWR的建模集调整后决定系数(Radj2)分别为0.59、0.62和0.63;对比MLR模型,3种GWR模型的Radj2<...  相似文献   

6.
By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data.  相似文献   

7.
ABSTRACT

Geographically weighted regression (GWR) is a classic and widely used approach to model spatial non-stationarity. However, the approach makes no precise expressions of its weighting kernels and is insufficient to estimate complex geographical processes. To resolve these problems, we proposed a geographically neural network weighted regression (GNNWR) model that combines ordinary least squares (OLS) and neural networks to estimate spatial non-stationarity based on a concept similar to GWR. Specifically, we designed a spatially weighted neural network (SWNN) to represent the nonstationary weight matrix in GNNWR and developed two case studies to examine the effectiveness of GNNWR. The first case used simulated datasets, and the second case, environmental observations from the coastal areas of Zhejiang. The results showed that GNNWR achieved better fitting accuracy and more adequate prediction than OLS and GWR. In addition, GNNWR is applicable to addressing spatial non-stationarity in various domains with complex geographical processes.  相似文献   

8.
省域经济增长与电力消费的局域空间计量经济分析   总被引:11,自引:0,他引:11  
中国各个地区经济发展对电力消费需求量大且存在地域差异,不同区域间的电力需求与经济增长之间的关系十分复杂,并非能由常系数的普通最小二乘回归分析所解释.采用电力消费模型,利用局域空间计量经济学模型方法--空间变系数的地理加权回归模型,对中国省域电力消费与经济增长之间的关系进行了局域空间计量经济分析.结果发现,中国大陆30个省域的电力消费和经济增长之间表现为一种非均衡的联动关系和局域性特征,制定差异化的区域电力消费调控政策是非常必要的.  相似文献   

9.
In this study, the geographically weighted regression (GWR) model is adapted to benefit from a broad range of distance metrics, where it is demonstrated that a well-chosen distance metric can improve model performance. How to choose or define such a distance metric is key, and in this respect, a ‘Minkowski approach’ is proposed that enables the selection of an optimum distance metric for a given GWR model. This approach is evaluated within a simulation experiment consisting of three scenarios. The results are twofold: (1) a well-chosen distance metric can significantly improve the predictive accuracy of a GWR model; and (2) the approach allows a good approximation of the underlying ‘optimal distance metric’, which is considered useful when the ‘true’ distance metric is unknown.  相似文献   

10.
A recent paper in this journal proposed a form of geographically weighted regression (GWR) that is termed parameter-specific distance metric geographically weighted regression (PSDM GWR). The central focus of the PSDM generalization of the GWR framework is that it allows the kernel function that weights nearby data to be specified with a distinct distance metric. As with the recent paper on Multiscale GWR (MGWR), the PSDM framework presents a form of GWR that also allows for parameter-specific bandwidths to be computed. As a result, a secondary focus of the PSDM GWR framework is to reduce the computational overhead associated with searching a massive parameter space to find a set of optimal parameter-specific bandwidths and parameter-specific distance metrics. In this comment, we discuss several concerns with the PSDM GWR framework in terms of model interpretability, complexity, and computational efficiency. We also recommend some best practices when using these models, suggest how to more holistically assess model variations, and set out an agenda to constructively focus future research endeavors.  相似文献   

11.
Geographically weighted regression (GWR) is an important local technique to model spatially varying relationships. A single distance metric (Euclidean or non-Euclidean) is generally used to calibrate a standard GWR model. However, variations in spatial relationships within a GWR model might also vary in intensity with respect to location and direction. This assertion has led to extensions of the standard GWR model to mixed (or semiparametric) GWR and to flexible bandwidth GWR models. In this article, we present a strongly related extension in fitting a GWR model with parameter-specific distance metrics (PSDM GWR). As with mixed and flexible bandwidth GWR models, a back-fitting algorithm is used for the calibration of the PSDM GWR model. The value of this new GWR model is demonstrated using a London house price data set as a case study. The results indicate that the PSDM GWR model can clearly improve the model calibration in terms of both goodness of fit and prediction accuracy, in contrast to the model fits when only one metric is singly used. Moreover, the PSDM GWR model provides added value in understanding how a regression model’s relationships may vary at different spatial scales, according to the bandwidths and distance metrics selected. PSDM GWR deals with spatial heterogeneities in data relationships in a general way, although questions remain on its model diagnostics, distance metric specification, and computational efficiency, providing options for further research.  相似文献   

12.
美国俄亥俄州土壤有机碳密度空间分布(英文)   总被引:2,自引:1,他引:1  
Historical database of National Soil Survey Center containing 1424 geo-referenced soil profiles was used in this study for estimating the organic carbon(SOC) for the soils of Ohio,USA.Specific objective of the study was to estimate the spatial distribution of SOC density(C stock per unit area) to 1.0-m depth for soils of Ohio using geographically weighted regression(GWR),and compare the results with that obtained from multiple linear regression(MLR).About 80% of the analytical data were used for calibration and 20% for validation.A total of 20 variables including terrain attributes,climate data,bedrock geology,and land use data were used for mapping the SOC density.Results showed that the GWR provided better estimations with the lowest(3.81 kg m 2) root mean square error(RMSE) than MLR approach.Total estimated SOC pool for soils in Ohio ranged from 727 to 742 Tg.This study demonstrates that,the local spatial statistical technique,the GWR can perform better in capturing the spatial distribution of SOC across the study region as compared to other global spatial statistical techniques such as MLR.Thus,GWR enhances the accuracy for mapping SOC density.  相似文献   

13.
Geographically weighted regression (GWR) is an important local technique for exploring spatial heterogeneity in data relationships. In fitting with Tobler’s first law of geography, each local regression of GWR is estimated with data whose influence decays with distance, distances that are commonly defined as straight line or Euclidean. However, the complexity of our real world ensures that the scope of possible distance metrics is far larger than the traditional Euclidean choice. Thus in this article, the GWR model is investigated by applying it with alternative, non-Euclidean distance (non-ED) metrics. Here we use as a case study, a London house price data set coupled with hedonic independent variables, where GWR models are calibrated with Euclidean distance (ED), road network distance and travel time metrics. The results indicate that GWR calibrated with a non-Euclidean metric can not only improve model fit, but also provide additional and useful insights into the nature of varying relationships within the house price data set.  相似文献   

14.
GWR模型在土壤重金属高光谱预测中的应用   总被引:5,自引:0,他引:5  
目前土壤重金属高光谱反演模型大多忽视了重金属与光谱变量间相关关系的空间异质性,这与实际情况不相吻合,而地理权重回归(GWR)模型能有效地揭示变量间关系的空间异质性。本文以福州市土壤重金属Cd、Cu、Pb、Cr、Zn、Ni为对象,构建土壤重金属预测的GWR高光谱模型,并将预测结果与普通最小二乘法回归(OLS)结果进行比较分析,探讨GWR模型在土壤重金属高光谱预测中的适用性及局限性。结果表明:① GWR模型在土壤重金属高光谱预测中适用与否取决于重金属对光谱变量影响的空间异质性程度:对于Cr、Cu、Zn、Pb等对光谱变量影响空间异质性大的元素,其GWR预测精度较OLS提高明显,表现为GWR模型的调节R2较OLS模型有了明显提高,分别为OLS模型的2.69倍、2.01倍、1.87倍和1.53倍;而AIC值以及残差平方和较OLS模型却明显降低,AIC值减少量均大于3个单位,残差平方和则仅分别为OLS模型的25.33%、30.09%、47.22%和86.84%;对于Cd和Ni等对光谱变量影响空间异质性小的元素,相较于OLS模型,GWR模型的调节R2分别提高了0.015和0.007,残差平方和分别减少了5.97%和4.18%,但AIC值却分别增加了2.737和2.762,GWR预测效果改善不明显;② 光谱变换可以有效增强土壤重金属的光谱特征,其中以光谱的倒数变换效果最好,而且该变换及其微分形式可以很好地提高模型的预测效果;③ GWR模型的应用前提是变量间关系的空间非平稳性,适合在与土壤光谱变量间关系具有显著空间异质性的重金属高光谱预测中推广。  相似文献   

15.
Several studies indicate that there is a positive relationship between green vegetation land cover and wealthy socio-economic conditions in urban areas. The purpose of this research is to test for and explore spatial variation in the relationship between socio-economic and green vegetation land cover across urban, suburban, and rural areas, using geographically weighted regression (GWR). The analysis was conducted at the census block group level for Massachusetts, using Census 2000 data and impervious surface data at 1-m resolution. To explore regional variations in the relationship, four scenarios were generated by regressing each of the following socio-economic variables – median household income, percentage of poverty, percentage of minority population, and median home value – against two environmental variables – percent of impervious surface and population density. GWR results show that there is a considerable spatial variation in the character and the strength of the relationship for each model. There are two main conclusions in this study. First, the impervious surface is generally a strong predictor of the level of wealth as measured by four variables included in the analysis, at the scale of census block group; however, the strength of the relationship varies geographically. Second, GWR, not ordinary least squares technique, should be used for regional scale spatial analysis because it is able to account for local effects and shows geographical variation in the strength of the relationship.  相似文献   

16.
董冠鹏  郭腾云  马静 《地理科学》2010,30(5):679-685
基于探索性空间数据分析技术(ESDA)划分出京津冀都市地区的中心区域和外围区域,并在传统经济收敛模型基础上,运用空间俱乐部收敛模型和局部空间回归模型对京津冀都市地区经济收敛情况进行研究。结果表明,首先,京津冀都市地区已形成了以北京、天津和唐山为核心的中心区域和以张家口市、保定市为核心的环绕京津的外围区域,京津冀都市地区整体上存在微弱的经济收敛。其次,京津冀都市地区中心地区由于经济发展水平较高,空间外溢效应较大,加之中心地区接受知识、技术扩散的能力较强,存在经济收敛,并且收敛速度较快,而外围区域则不存在经济收敛。再次,中心地区和外围地区内部存在经济收敛系数结构的不稳定性。  相似文献   

17.
Accurately mapping the spatial distribution of soil total nitrogen is important to precision agriculture and environmental management. Geostatistical methods have been frequently used for predictive mapping of soil properties. Recently, a local regression method, geographically weighted regression (GWR), got the attention of environmentalists as an alternative in spatial modeling of environmental attributes, due to its capability of incorporating various auxiliary variables with spatially varied correlation coefficients. The objective of this study is to compare GWR and ordinary cokriging (OCK) in predictive mapping of soil total nitrogen (TN) using multiple environmental variables. 353 soil Samples within the surface horizon of 0–20 cm in a study area were collected, and their TN contents were measured for calibrating and validating the GWR and OCK interpolations. The environmental variables finally chosen as auxiliary data include elevation, land use types, and soil types. Results indicate that, although OCK is slightly better than GWR in global accuracy of soil TN prediction (the adjusted R2 for GWR and OCK are 0.5746 and 0.6858, respectively), the soil TN map interpolated by GWR shows many details reflecting the spatial variations of major auxiliary variables while OCK smoothes out almost all local details. Geographically weighted regression could account for both the spatial trend and local variations, whilst OCK had difficulties to capture local variations. It is concluded that GWR is a more promising spatial interpolation method compared to OCK in predicting soil TN and potentially other soil properties, if a suitable set of auxiliary variables are available and selected.  相似文献   

18.
Public interventions in support of public health and housing in developing countries could benefit from better understanding of spatial heterogeneity and anisotropy. Estimation of directional variation within geographically weighted regression (GWR) faces problems of local parameter instability, border effects and, if extended to non- spatial attributes, potential endogeneity. This study formulates a GWR model where anisotropy is filtered out based on information from directional variograms. Along with classical regressions, the approach is applied to investigate child anaemia and its associations with household characteristics, sanitation and basic infrastructure in 173 regions of sub-Saharan Africa. Based on ordinary least squares (OLS) results, anaemia prevalence rates are up to three times more responsive to child morbidity (related to malaria and other diseases) than to other covariates. GWR estimates provide similar indications, but also point to poor sanitation facilities as a cofactor of severe anaemia particularly in east and southern Africa. The anisotropy-adjusted GWR is spatially stationary in residuals, and its estimated local parameters are less collinear than GWR with no adjustment. However, similar explanatory power and lack of significant bias in parameters estimated by the latter suggest that directional variation is largely captured by modelled co-movements among the variables.  相似文献   

19.
基于MODIS数据的青藏高原气温与增温效应估算   总被引:12,自引:2,他引:10  
姚永慧  张百平 《地理学报》2013,68(1):95-107
利用2001-2007 年MODIS地表温度数据、137 个气象观测台站数据和ASTERGDEM数据, 采用普通线性回归分析方法(OLS)及地理加权回归分析方法(GWR), 研究了高原月均地表温度与气温的相关关系, 最终选择精度较高的GWR分析方法, 建立了高原气温与地表温度、海拔高度的回归模型。各月气温GWR回归模型的决定系数(Adjusted R2) 都达到了0.91 以上(0.91~0.95), 标准误差(RMSE) 介于1.16~1.58℃;约70%以上的台站各月残差介于-1.5~1.5℃之间, 80%以上的台站的残差介于-2~2℃之间。根据该模型, 估算了青藏高原气温, 并在此基础上, 将高原及周边地区7 月份月均气温转换到4500 m和5000 m海拔高度上, 对比分析高原内部相对于外围地区的增温效应。研究结果表明:(1) 利用GWR方法, 结合地面台站的观测数据和MODIS Ts、DEM等, 对高原气温估算的精度高于以往普通回归分析模型估算的精度(RMSE=2~3℃), 精度可以提高到1.58℃;(2) 高原夏半年海拔5000 m左右的高山区气温能达到0℃以上, 尤其是7 月份, 海拔4000~5500 m的高山区的气温仍能达到10℃左右, 为山地森林的发育提供了温度条件, 使高原成为北半球林线分布最高的地方;(3) 高原的增温效应非常突出, 初步估算, 在相同的海拔高度上高原内部气温要比外围地区高6~10℃。  相似文献   

20.
Changing urban landscape with multistoried high rises, roads and pavements is continuously reducing urban green space. These structures result in high surface temperature variation within cities. To explore the relationship between surface temperature and normalized difference vegetation index (NDVI), this study estimates two models—geographically weighted regression (GWR) and a fixed effect panel data model in relation to the Guwahati Metropolitan Area (GMA), a secondary city in north east India. The results indicate the superiority of GWR regression in presence of spatial dependence. Panel data analysis shows that the densely populated urban areas in the GMA with less than 10 per cent greenery are 1°C warmer than the sub-urban areas with 50 per cent greenery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号