首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王新刚  孔云峰 《地理科学》2015,35(5):615-621
针对地理加权回归(GWR)模型不能有效处理样本数据空间自相关性这一问题,构造局部时空窗口统计量,尝试改进时空加权回归(GTWR)模型。定义多时空窗口的概念,给出其选取、计算和验证方法;计算时空窗口包含的各样本点的被解释变量平均值,与样本拟合点的被解释变量值的比值,作为新的解释变量,构建改进的时空加权回归(IGTWR)模型。以土地稀缺、多中心、资源型城市——湖北省黄石市为例,收集2007~2012年商品住宅成交价格1.93万个数据和398个楼栋样本点,选取小区等级、绿化率、楼栋总层数、容积率、距区域中心距离和销售年份6个解释变量,分别利用常规线性回归(OLS)、GWR、GTWR和IGTWR方法进行回归分析。模型结果表明:计算Moran’s I指数和分析时间序列的自相关性,能确定时空窗口的大小和数量的选取;IGTWR模型和各变量的回归统计均通过0.05的显著性水平检验,有关解释变量的系数估计值在空间分布上能合理解释;GWR拟合结果优于OLS,GTWR优于GWR,而IGTWR拟合精度最好。与GTWR模型分析相比, IGTWR模型R2从0.877提升到0.919,而AICc、残差方(RSS)和均方差(MSE)分别从6 226、49 996 201和354.427下降到6 206、32 327 472和284.969。案例研究表明:IGTWR能够表达一定时空范围的时空自相关特征,减小了估计误差,提高了回归拟合精度。  相似文献   

2.
ABSTRACT

Geographically weighted regression (GWR) is a classic and widely used approach to model spatial non-stationarity. However, the approach makes no precise expressions of its weighting kernels and is insufficient to estimate complex geographical processes. To resolve these problems, we proposed a geographically neural network weighted regression (GNNWR) model that combines ordinary least squares (OLS) and neural networks to estimate spatial non-stationarity based on a concept similar to GWR. Specifically, we designed a spatially weighted neural network (SWNN) to represent the nonstationary weight matrix in GNNWR and developed two case studies to examine the effectiveness of GNNWR. The first case used simulated datasets, and the second case, environmental observations from the coastal areas of Zhejiang. The results showed that GNNWR achieved better fitting accuracy and more adequate prediction than OLS and GWR. In addition, GNNWR is applicable to addressing spatial non-stationarity in various domains with complex geographical processes.  相似文献   

3.
Public interventions in support of public health and housing in developing countries could benefit from better understanding of spatial heterogeneity and anisotropy. Estimation of directional variation within geographically weighted regression (GWR) faces problems of local parameter instability, border effects and, if extended to non- spatial attributes, potential endogeneity. This study formulates a GWR model where anisotropy is filtered out based on information from directional variograms. Along with classical regressions, the approach is applied to investigate child anaemia and its associations with household characteristics, sanitation and basic infrastructure in 173 regions of sub-Saharan Africa. Based on ordinary least squares (OLS) results, anaemia prevalence rates are up to three times more responsive to child morbidity (related to malaria and other diseases) than to other covariates. GWR estimates provide similar indications, but also point to poor sanitation facilities as a cofactor of severe anaemia particularly in east and southern Africa. The anisotropy-adjusted GWR is spatially stationary in residuals, and its estimated local parameters are less collinear than GWR with no adjustment. However, similar explanatory power and lack of significant bias in parameters estimated by the latter suggest that directional variation is largely captured by modelled co-movements among the variables.  相似文献   

4.
基于安徽省140个采样点的土壤pH数据,综合考虑土壤、地形、气候、生物等因子对土壤pH的影响,采用地理加权回归(Geographically Weighted Regression, GWR)、主成分地理加权回归(Principal Component Geographically Weighted Regression, PCA-GWR)和混合地理加权回归(Mixed Geographically Weighted Regression, M-GWR)3种模型对安徽省土壤pH空间分布进行建模预测,揭示环境因子对土壤pH的影响在空间上的差异,最后以多元线性回归模型(Multiple Linear Regression, MLR)为基准比较3种GWR模型的精度。研究表明:(1)安徽省土壤pH具有空间异质性,且集聚特征明显。(2) 3种GWR模型中M-GWR模型略优,GWR、PCA-GWR和M-GWR的建模集调整后决定系数(Radj2)分别为0.59、0.62和0.63;对比MLR模型,3种GWR模型的Radj2<...  相似文献   

5.
The geographically weighted regression (GWR) has been widely applied to many practical fields for exploring spatial non-stationarity of a regression relationship. However, this method is inherently not robust to outliers due to the least squares criterion in the process of estimation. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression relationship. Using the least absolute deviation criterion, we propose two robust scenarios of the GWR approaches to handle outliers. One is based on the basic GWR and the other is based on the local linear GWR (LGWR). The proposed methods can automatically reduce the impact of outliers on the estimates of the regression coefficients and can be easily implemented with modern computer software for dealing with the linear programming problems. We then conduct simulations to assess the performance of the proposed methods and the results demonstrate that the methods are quite robust to outliers and can retrieve the underlying coefficient surfaces satisfactorily even though the data are seriously contaminated or contain severe outliers.  相似文献   

6.
广州市社区出行低碳指数格局及其影响因素的空间异质性   总被引:4,自引:1,他引:3  
杨文越  李涛  曹小曙 《地理研究》2015,34(8):1471-1480
通过构建社区出行低碳指数(CTLCI)模型,对广州市社区出行低碳指数的空间格局及其差异特征进行了分析,并利用全局回归(OLS)模型和地理加权回归(GWR)模型对社区出行低碳指数的影响因素以及其间关系的空间异质性进行了研究。结果表明,广州市社区出行低碳指数由中心城区向外逐渐递增,呈明显的圈层结构。内圈层的社区出行低碳指数内部差异最小,中间过渡圈层的最大。社区人口密度对社区出行低碳指数的影响以正向作用为主,公共交通供给水平和路网密集程度对社区出行低碳指数的影响以负向作用为主,且它们的影响作用具有空间异质性。具体指出了在不同地域空间内社区人口密度、公共交通供给水平和路网密集程度对社区出行低碳指数在影响程度和作用方向上的差异,为减少广州城市交通碳排放、针对不同空间制定有效的低碳政策和构建低碳城市空间结构提供了科学依据。  相似文献   

7.
城镇用地扩展格局及驱动力研究对城市群发展规划与决策具有重要意义。以京津冀地区为例,基于城镇用地扩展强度指数、城镇用地扩展差异指数、分形维数、土地城镇化率和重心转移模型,多维解析了城市群城镇用地扩展格局特征,并耦合重心转移模型和时空地理加权回归(GTWR)模型构建重心-GTWR模型,在对空间格局进行长时间序列多维度指标分析的基础上,运用该模型依序对其特征进行驱动力解读,进而总结凝练京津冀区域发展的主导模式与城市核心驱动力。主要结论为:① 1990-2015年,京津冀城市群城镇用地扩展强度呈现“下降-上升-下降”的趋势,高峰时期在2005-2010年,在2005年之前高速发展城市集中在北京、天津、保定和廊坊,2005年之后集中在邢台和邯郸;② 城市群城镇用地重心虽呈现出发散态势,但城市之间的局部相互作用力逐渐增强,城镇用地扩展驱动力表现出空间溢出特征;③ 京津冀城市群空间发展模式由以北京和天津为中心的双核发展模式向多核发展模式转变,并出现北部资源运输核心、中部经济发展核心和南部投资发展核心三大功能核心组团,城市群趋向于多核功能协同发展模式;④ 重心-GTWR模型结合了时空非平稳性和城市空间相互作用,将城市群城镇用地扩展作为一个时空变化系统进行分析,经验证,该模型在城镇用地扩展格局驱动力分析研究中具有可行性。  相似文献   

8.
Several studies indicate that there is a positive relationship between green vegetation land cover and wealthy socio-economic conditions in urban areas. The purpose of this research is to test for and explore spatial variation in the relationship between socio-economic and green vegetation land cover across urban, suburban, and rural areas, using geographically weighted regression (GWR). The analysis was conducted at the census block group level for Massachusetts, using Census 2000 data and impervious surface data at 1-m resolution. To explore regional variations in the relationship, four scenarios were generated by regressing each of the following socio-economic variables – median household income, percentage of poverty, percentage of minority population, and median home value – against two environmental variables – percent of impervious surface and population density. GWR results show that there is a considerable spatial variation in the character and the strength of the relationship for each model. There are two main conclusions in this study. First, the impervious surface is generally a strong predictor of the level of wealth as measured by four variables included in the analysis, at the scale of census block group; however, the strength of the relationship varies geographically. Second, GWR, not ordinary least squares technique, should be used for regional scale spatial analysis because it is able to account for local effects and shows geographical variation in the strength of the relationship.  相似文献   

9.
胡宇娜  梅林  魏建国 《地理科学》2018,38(1):107-113
基于DEA模型对中国31个省域的旅行社业效率空间分异特征进行了分析,首次运用GWR模型探索交通、资本、人才、信息化和经济动力对区域旅行社业效率影响的空间差异。结果表明:旅行社业效率在空间上具有正相关性和集聚特征,空间格局从“川”字型向“山”字型转变。各动力因子的系数均存在空间非平稳性。资本和人才动力的回归系数在空间分布上从南向北依次递减;经济动力的分布趋势为从北向南依次递减;交通动力对中西部地区旅行社效率提升的促进作用显著于东部地区;信息化动力则在东部地区表现出较强的促进作用。  相似文献   

10.
Qin  Yun  Ren  Guoyu  Huang  Yunxin  Zhang  Panfeng  Wen  Kangmin 《地理学报(英文版)》2021,31(3):389-402
The surface air temperature lapse rate(SATLR)plays a key role in the hydrological,glacial and ecological modeling,the regional downscaling,and the reconstruction of high-resolution surface air temperature.However,how to accurately estimate the SATLR in the regions with complex terrain and climatic condition has been a great challenge for re-searchers.The geographically weighted regression(GWR)model was applied in this paper to estimate the SATLR in China's mainland,and then the assessment and validation for the GWR model were made.The spatial pattern of regression residuals which was identified by Moran's Index indicated that the GWR model was broadly reasonable for the estimation of SATLR.The small mean absolute error(MAE)in all months indicated that the GWR model had a strong predictive ability for the surface air temperature.The comparison with previous studies for the seasonal mean SATLR further evidenced the accuracy of the estimation.Therefore,the GWR method has potential application for estimating the SATLR in a large region with complex terrain and climatic condition.  相似文献   

11.
A recent paper in this journal proposed a form of geographically weighted regression (GWR) that is termed parameter-specific distance metric geographically weighted regression (PSDM GWR). The central focus of the PSDM generalization of the GWR framework is that it allows the kernel function that weights nearby data to be specified with a distinct distance metric. As with the recent paper on Multiscale GWR (MGWR), the PSDM framework presents a form of GWR that also allows for parameter-specific bandwidths to be computed. As a result, a secondary focus of the PSDM GWR framework is to reduce the computational overhead associated with searching a massive parameter space to find a set of optimal parameter-specific bandwidths and parameter-specific distance metrics. In this comment, we discuss several concerns with the PSDM GWR framework in terms of model interpretability, complexity, and computational efficiency. We also recommend some best practices when using these models, suggest how to more holistically assess model variations, and set out an agenda to constructively focus future research endeavors.  相似文献   

12.
中国省域犯罪率影响因素的空间非平稳性分析   总被引:4,自引:2,他引:2  
严小兵 《地理科学进展》2013,32(7):1159-1166
收入差距和流动人口是影响犯罪率的两个重要因素, 以往研究基于OLS模型, 在假设地域空间为均质的前提下分析其对犯罪率的影响, 但现实世界的空间单元往往难以满足“均质”的假设, 多数表现为“空间异质”。以OLS计量空间异质会造成计量结果出现偏差, 同时无法了解不同空间单元的不同影响。而地理加权回归模型通过将空间结构嵌入线性回归模型中, 很好的解决了空间异质的计量问题。利用地理加权回归模型研究2008 年中国大陆省域单元犯罪率的影响因素, 结果表明:① 犯罪率的影响因素表现出空间非平稳性, 流动人口与犯罪率显著相关, 但各个省份相关程度并不相同, 影响关系随空间位置变化而变化;② 地理加权回归模型的计量精度和拟合度比OLS模型有大幅提高  相似文献   

13.
Scientific interpretation of the relationships between agricultural landscape patterns and urbanization is important for ecological planning and management. Ordinary least squares (OLS) regression is the primary statistical method in previous studies. However, this global regression lacks the ability to uncover some local-specific relationships and spatial autocorrelation in model residuals. This study employed geographically weighted regression (GWR) to examine the spatially varying relationships between several urbanization indicators (urbanization intensity index, distance to urban centers and distance to road) and changes in metrics describing agricultural landscape patterns (total area, patch density, perimeter area ratio distribution and aggregation index) at two block scales (5 km and 10 km). Results denoted that GWR was more powerful than OLS in interpreting relationships between agricultural landscape patterns and urbanization, since GWR was characterized by higher adjust R2, lower Akaike Information Criterion values and reduced spatial autocorrelations in model residuals. Character and strength of the relationships identified by GWR varied spatially. In addition, GWR results were scale-dependent and scale effects were particularly significant in three aspects: kernel bandwidth of weight determination, block scale of pattern analysis, and window size of local variance analysis. Homogeneity and heterogeneity in the relationships between agricultural landscape patterns and urbanization were subject to the coupled influences of the three scale effects. We argue that the spatially varying relationships between agricultural landscape patterns and urbanization are not accidental but nearly universal. This study demonstrated that GWR has the potential to provide references for ecological planners and managers to address agricultural landscapes issues at all scales.  相似文献   

14.
美国俄亥俄州土壤有机碳密度空间分布(英文)   总被引:2,自引:1,他引:1  
Historical database of National Soil Survey Center containing 1424 geo-referenced soil profiles was used in this study for estimating the organic carbon(SOC) for the soils of Ohio,USA.Specific objective of the study was to estimate the spatial distribution of SOC density(C stock per unit area) to 1.0-m depth for soils of Ohio using geographically weighted regression(GWR),and compare the results with that obtained from multiple linear regression(MLR).About 80% of the analytical data were used for calibration and 20% for validation.A total of 20 variables including terrain attributes,climate data,bedrock geology,and land use data were used for mapping the SOC density.Results showed that the GWR provided better estimations with the lowest(3.81 kg m 2) root mean square error(RMSE) than MLR approach.Total estimated SOC pool for soils in Ohio ranged from 727 to 742 Tg.This study demonstrates that,the local spatial statistical technique,the GWR can perform better in capturing the spatial distribution of SOC across the study region as compared to other global spatial statistical techniques such as MLR.Thus,GWR enhances the accuracy for mapping SOC density.  相似文献   

15.
Changing urban landscape with multistoried high rises, roads and pavements is continuously reducing urban green space. These structures result in high surface temperature variation within cities. To explore the relationship between surface temperature and normalized difference vegetation index (NDVI), this study estimates two models—geographically weighted regression (GWR) and a fixed effect panel data model in relation to the Guwahati Metropolitan Area (GMA), a secondary city in north east India. The results indicate the superiority of GWR regression in presence of spatial dependence. Panel data analysis shows that the densely populated urban areas in the GMA with less than 10 per cent greenery are 1°C warmer than the sub-urban areas with 50 per cent greenery.  相似文献   

16.
Spatial models are effective in obtaining local details on grassland biomass, and their accuracy has important practical significance for the stable management of grasses and livestock. To this end, the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China (August 2020), combined with hydrometeorology, elevation, net primary productivity (NPP), and other auxiliary data over the same period. Accordingly, non-stationary characteristics of the spatial scale, and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression (MGWR) model. The results showed that the model was suitable for correlation analysis. The spatial scale of ratio resident-area index (PRI) was the largest, followed by the digital elevation model, NPP, distance from gully, distance from river, average July rainfall, and daily temperature range; whereas the spatial scales of night light, distance from roads, and relative humidity (RH) were the most limited. All influencing factors maintained positive and negative effects on grass yield, save for the strictly negative effect of RH. The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield. Regression parameters revealed that the results of Ordinary least squares (OLS) (Adjusted R2 = 0.642) and geographically weighted regression (GWR) (Adjusted R2 = 0.797) models were worse than those of MGWR (Adjusted R2 = 0.889) models. Based on the results of the RMSE and radius index, the simulation effect also was MGWR > GWR > OLS models. Ultimately, the MGWR model held the strongest prediction performance (R2 = 0.8306). Spatially, the grass yield was high in the south and west, and low in the north and east of the study area. The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.  相似文献   

17.
Understanding scale effects is important and indispensable for geography studies. However, spatial and spatiotemporal statistical tools for measuring the operational scales of different processes are rather limited. This article extends the popular geographically and temporally weighted regression (GTWR) model to consider operational scale effects by proposing multiscale GTWR (MGTWR), which offers a flexible and scalable framework for identifying and analysing multiscale processes by specifying flexible bandwidths for various covariates. Then, MGTWR is employed to explore spatiotemporal variations and how influential factors are associated with housing prices in Shenzhen. This article attempts to extend GTWR to MGTWR in consideration of scale effects, thereby highlighting the importance of different levels of spatiotemporal heterogeneity. Furthermore, the empirical results of this study can provide valuable policy implications for real estate development in areas where urban planning should address multiscale effects in both temporal and spatial dimensions.  相似文献   

18.
Statistical tests for whether some coefficients really vary over space play an important role in using the geographically weighted regression (GWR) to explore spatial non-stationarity of the regression relationship. In view of some shortcomings of the existing inferential methods, we propose a residual-based bootstrap test to detect the constant coefficients in a GWR model. The proposed test is free of the assumption that the model error term is normally distributed and admits some useful extensions for identifying more complicated spatial patterns of the coefficients. Some simulation with comparison to the existing test methods is conducted to assess the test performance, including the accuracy of the bootstrap approximation to the null distribution of the test statistic, the power in identifying spatially varying coefficients and the robustness to collinearity among the explanatory variables. The simulation results demonstrate that the bootstrap test works quite well. Furthermore, a real-world data set is analyzed to illustrate the application of the proposed test.  相似文献   

19.
Spatiotemporal kriging (STK) is recognized as a fundamental space-time prediction method in geo-statistics. Spatiotemporal regression kriging (STRK), which combines space-time regression with STK of the regression residuals, is widely used in various fields, due to its ability to take into account both the external covariate information and spatiotemporal autocorrelation in the sample data. To handle the spatiotemporal non-stationary relationship in the trend component of STRK, this paper extends conventional STRK to incorporate it with an improved geographically and temporally weighted regression (I-GTWR) model. A new geo-statistical model, named geographically and temporally weighted regression spatiotemporal kriging (GTWR-STK), is proposed based on the decomposition of deterministic trend and stochastic residual components. To assess the efficacy of our method, a case study of chlorophyll-a (Chl-a) prediction in the coastal areas of Zhejiang, China, for the years 2002 to 2015 was carried out. The results show that the presented method generated reliable results that outperform the GTWR, geographically and temporally weighted regression kriging (GTWR-K) and spatiotemporal ordinary kriging (STOK) models. In addition, employing the optimal spatiotemporal distance obtained by I-GTWR calibration to fit the spatiotemporal variograms of residual mapping is confirmed to be feasible, and it considerably simplifies the residual estimation of STK interpolation.  相似文献   

20.
Accurately mapping the spatial distribution of soil total nitrogen is important to precision agriculture and environmental management. Geostatistical methods have been frequently used for predictive mapping of soil properties. Recently, a local regression method, geographically weighted regression (GWR), got the attention of environmentalists as an alternative in spatial modeling of environmental attributes, due to its capability of incorporating various auxiliary variables with spatially varied correlation coefficients. The objective of this study is to compare GWR and ordinary cokriging (OCK) in predictive mapping of soil total nitrogen (TN) using multiple environmental variables. 353 soil Samples within the surface horizon of 0–20 cm in a study area were collected, and their TN contents were measured for calibrating and validating the GWR and OCK interpolations. The environmental variables finally chosen as auxiliary data include elevation, land use types, and soil types. Results indicate that, although OCK is slightly better than GWR in global accuracy of soil TN prediction (the adjusted R2 for GWR and OCK are 0.5746 and 0.6858, respectively), the soil TN map interpolated by GWR shows many details reflecting the spatial variations of major auxiliary variables while OCK smoothes out almost all local details. Geographically weighted regression could account for both the spatial trend and local variations, whilst OCK had difficulties to capture local variations. It is concluded that GWR is a more promising spatial interpolation method compared to OCK in predicting soil TN and potentially other soil properties, if a suitable set of auxiliary variables are available and selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号