首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
143Nd/144Nd ratios, and Sm and Nd abundances, are reported for particulates from major and minor rivers of the Earth, continental sediments, and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. Overall, Sm/Nd ratios and Nd isotopic compositions in contemporary continental erosion products vary within the small ranges of 147Sm/144Nd= 0.115 ± 0.01 and143Nd/144Nd= 0.51204 ± 0.0002 (εNd = −11.4 ± 4). The average period of residence in the continental crust is estimated to be1.70 ± 0.35Ga.

These results combined with data from the literature have implications for the age, history, and composition of the sedimentary mass and the continental crust: (1) The average “crustal residence age” of the whole sedimentary mass is about 1.9 Ga. (2) The range of Nd isotope compositions in the continent derived particulate input to the oceans is the same as Atlantic sediments and seawater, but lower than those of the Pacific, demonstrating the importance of Pacific volcanism to Pacific Nd chemistry. (3) The average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean. This precludes the likelihood of major mafic to felsic or felsic to mafic trends in the overall composition of the upper continental crust through Earth history. (4) Sediments appear to be formed primarily by erosion of continental crust having similar Sm/Nd ratios, rather than by mixing of mafic and felsic compositions. (5) The average ratio of 143Nd/144Nd≈ 0.5117 (εNd ≈ −17) in the upper continental crust, assuming its mean age is about 2 Ga. (6) The uniformity of the SmNd isotopic systematics in river and aeolian particulates primarily reflects efficient recycling of old sediment by sedimentary processes on a short time scale compared to the amount of time the material has resided in the crust.  相似文献   


2.
The chronology and isotope geochemistry of a selection of Proterozoic Scourie dykes has been investigated in order to specify both their time of emplacement within the thermal history of the Archaean crust of N.W. Scotland, and to attempt to characterise the evolution of continental lithosphere. SmNd, RbSr and UPb isotope analyses are presented. Primary, major igneous minerals separated from four well preserved dykes yield SmNd ages of 2.031 ± 0.062Ga, 2.015 ± 0.042Ga, 1.982 ± 0.044Ga and 2.101 ± 0.078Ga, which are interpreted as crystallisation ages.The initial Nd isotope compositions in the dykes at their emplacement age of 2.0 Ga, range from +3.4 to −6.8, indicating the presence of an older lithospheric component. SmNd whole-rock isotope data for fifteen dykes, if interpreted to have age significance, yield an “age” of 3.05 ± 0.27 Ga. SmNd crustal residence ages for the same dykes average 2.95 Ga, which is interpreted as the time that small melts were added to the Lewisian lithosphere. The possibility that correlated147Sm/144Nd and143Nd/144Nd ratios are an artifact of mixing between depleted mantle melts generated at 2.0 Ga, and an older enriched lithospheric component is not eliminated by the data, but the relationship between 1/Nd and143Nd/144Nd ratios rules out any simple mixing. UPb isotope data for plagioclase feldspars and whole-rock samples of dykes provide useful estimates of initial Pb-isotope composition of the dykes at the time of their emplacement. Initial206Pb/204Pb and207Pb/204Pb ratios vary considerably and range from 13.98 to 15.78, and 14.72 to 15.56 respectively, and suggest that the UPb fractionation responsible must have occurred at least 2.5 Ga ago.The Scourie dykes have inherited a trace element enriched component from the Lewisian lithosphere, which has resided there since ca. 3 Ga ago. Whether the dykes inherited this material from the crust or the mantle portions of the lithosphere or both, it seems likely that small basaltic melts derived from asthenospheric mantle were ultimately responsible for the enrichment. The simplest view is that these small melt fractions had been resident in the mantle part of the Lewisian lithosphere. In this case the Archaean trace-element enrichment and element fractionation in the Lewisian lithospheric mantle sampled by the dykes was closely associated in time with the generation of the 2.9 Ga old crustal portion of the lithosphere [36,37].  相似文献   

3.
The times of original fractionation of the Sm and Nd component of clastic sediments from a mantle source (≡ crustal residence age) have been estimated from Sm-Nd model ages calculated relative to a depleted mantle evolution. In this way the provenance and evolution of selected Precambrian and Phanerozoic sediments and metasediments from the British Isles have been examined. Whereas some Archaean and early Proterozoic sediments have Sm-Nd model ages that are close to their stratigraphic age, the Phanerozoic sediments analysed have model ages as much as 2.0 Ga in excess of their stratigraphic age.A more detailed study of Lower Palaeozoic sediments deposited on the northern margin of the Iapetus Ocean provides evidence for a marked change of provenance in the Ordovician after the deposition of the Dalradian Supergroup. A component with comparatively high143Nd/144Nd and Sm/Nd ratio (presumably basaltic) is present in the sediments throughout the accretionary prism. Crustal residence age estimates average about 1.5 Ga for both these Lower Palaeozoic sediments, and modern pelagic clays, and collectively fail to provide any evidence for significant continental growth during the Phanerozoic.  相似文献   

4.
Published data showing a linear correlation between initial Nd and Sr isotope compositions in young basalts indicate the existence of a spectrum of isotopically distinct reservoirs in the mantle which represent either (1) mixtures of two homogeneous endmember reservoirs, one of which may be undifferentiated material or (2) fractionated reservoirs all derived from a homogeneous initial reservoir with the same ratio of enrichment factors for Sm/Nd and Rb/Sr. The slope of the correlation, which can be described approximately by (87Sr/86Sr) = ?3.74114 (143Nd/144Nd) + 2.61935orεNd = ?2.7 εSr, places constraints on the origin of these reservoirs and hence on the chemical evolution of the crust-mantle system. The reservoirs could be residual regions of the mantle left after ancient partial melting events. If so, the requirement of constant relative fractionation of Sm/Nd and Rb/Sr in refractory residues is a strong constraint on partial melting models. Calculations suggest that batch melting models are more compatible with this constraint than are fractional melting models, but models incorporating currently accepted distribution coefficients and residual phase assemblages cannot reproduce the observed isotope effects except under highly specific conditions. The slope of the correlation is not consistent with the hypotheses that chemical structure in the mantle is due to accretional heterogeneity or variable loss of elements to the core. If the mantle reservoirs are complementary in composition to the continental crust, and if the crust + mantle has εNd = 0andεSr = 0 and chondritic Sr/Nd, then Rb/Sr in the crust is calculated to be less than 0.10, suggesting that the crust may be more mafic in composition and contain a smaller proportion of the earth's Rb and heat-producing elements than previously estimated.  相似文献   

5.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

6.
Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive εNd values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high ε values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation and of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic “oceanic” crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high εNd values of the Archean upper mantle. Using oceanic crustal production proportional to heat productivity, we show that temporary storage in the mantle of that crust, whether basaltic as formed by 5–20% partial melting, or partly komatiitic and formed by higher extents of melting is sufficient to balance an early depleted mantle of significant volume with εNd at least +3.0.  相似文献   

7.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

8.
The147Sm143Nd and146Sm142Nd isotope systematics have been investigated in five chondrites and the achondrites Moama and Angra dos Reis (ADOR). The new chondrite data and those we have reported before are all consistent with our previously reported reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511847 and (147Sm/144Nd)CHUR0 = 0.1967. Most of the bulk chondrites analyzed have 143Nd/144Nd and 147Sm/144Nd within 0.5 ε-units and 0.15% of the CHUR values, respectively. This strongly suggests that the CHUR evolution is now known to within these error limits throughout the history of the solar system. The St. Severin chondrite yields an SmNd internal isochron age of T = 4.55 ± 0.33AE and an initial εNd = 0.11 ? 0.26. Much larger variations in Sm/Nd ratios were measured in mineral separates of the Moama and ADOR achondrites. Thus, very precise ages of 4.46 ± 0.03AE and4.564 ± 0.037AE were obtained for these meteorites, respectively. The initial εNd values obtained for Moama and ADOR are 0.03 ? 0.25and0.14 ? 0.20, respectively. The values obtained on these meteorites are fully consistent with the CHUR evolution curve. Initial εNd data on terrestrial igneous and meta-igneous rocks demonstrates that positive initial εNd values occur throughout the past 4 AE. This confirms our earlier report that a light rare earth element-depleted layer has existed throughout most of the Earth history and is the source of present-day mid-ocean ridge basalts. The inferred shape of the εNd vs. age curve for the depleted mantle suggests profound changes in tectonic regimes with time; in particular, it suggests a much higher rate of recycling of continental materials into the mantle during the Archean as compared to later time periods.146Sm142Nd systematics of ADOR and Moama are supportive of the hypothesis that146Sm was present in the early solar system and suggests a 146Sm/144Sm ratio of about 0.01 for the solar system ~ 4.56 AE ago. This inferred high146Sm abundance cannot be explained as a late injection from a supernova and must be due to galactic nucleo-synthesis.  相似文献   

9.
Sm-Nd isotopic evolution of chondrites   总被引:8,自引:0,他引:8  
The143Nd/144Nd and147Sm/144Nd ratios have been measured in five chondrites and the Juvinas achondrite. The range in143Nd/144Nd for the analyzed meteorite samples is 5.3 ε-units (0.511673–0.511944) normalized to150Nd/142Nd= 0.2096. This is correlated with the variation of 4.2% in147Sm/144Nd (0.1920–0.2000). Much of this spread is due to small-scale heterogeneities in the chondrites and does not appear to reflect the large-scale volumetric averages. It is shown that none of the samples deviate more than 0.5 ε-units from a 4.6-AE reference isochron and define an initial143Nd/144Nd ratio at 4.6 AE of0.505828 ± 9. Insofar as there is a range of values of147Sm/144Nd there is no unique way of picking solar or average chondritic values. From these data we have selected a new set of self-consistent present-day reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511836and(147Sm/144Nd)CHUR0 = 0.1967. The new147Sm/144Nd value is 1.6% higher than the previous value assigned to CHUR using the Juvinas data of Lugmair. This will cause a small but significant change in the CHUR evolution curve. Some terrestrial samples of Archean age show clear deviations from the new CHUR curve. If the CHUR curve is representative of undifferentiated mantle then it demonstrates that depleted sources were also tapped early in the Archean. Such a depleted layer may represent the early evolution of the source of present-day mid-ocean ridge basalts. There exists a variety of discrepancies with most earlier meteorite data which includes determination of all Nd isotopes and Sm/Nd ratios. These discrepancies require clarification in order to permit reliable interlaboratory comparisons. The new CHUR curve implies substantial changes in model ages for lunar rocks and thus also in the interpretation of early lunar chronology.  相似文献   

10.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

11.
Measurements of143Nd/144Nd and147Sm/144Nd are reported for whole rocks and mineral separates from granulites of the Napier Complex at Fyfe Hills. Charnockites, leuconorites and gabbros yield a whole rock SmNd isochron age of3060 ± 160m.y. and an initial143Nd/144Nd ratio of0.50776 ± 10 (?Nd(3060m.y.) = ?2.0 ± 1.8). The negative ?Nd value and the presence of geologically induced dispersion in the data suggest that the isochron age does not represent the time of primary crystallization of the complex but instead indicates a time of later redistribution of Sm and Nd and partial re-equilibration of143Nd/144Nd ratios. This probably occurred during the upper granulite facies metamorphism which has also been dated at~ 3100m.y. by RbSr and UPb zircon studies [1]. Coexisting clinopyroxene, apatite and total rock fractions in two adjacent samples define an approximately linear array corresponding to an age of 2300 ± 300 m.y. This array indicates that redistribution of Sm and Nd and re-equilibration of143Nd/144Nd ratios occurred on an intermineral scale during the upper amphibolite to lower granulite facies metamorphism at~ 2450m.y.Due to the resetting of the SmNd system on both whole rock and mineral scales, the primary crystallization age of the igneous protolith is not well constrained by the present data, although it is clearly3100m.y. If it is assumed that the complex was derived initially from a depleted mantle reservoir(?Nd(T) ? 2), evolution of the negative ?Nd value of ?2.0 with the observed Sm/Nd ratios requires a prehistory of~ 380m.y. This implies a primary age of~ 3480m.y. However, substantially older primary ages can be inferred if the source reservoirs had?Nd(T) > 2 and/or substantial reductions in the Sm/Nd ratio occurred in whole rocks during the granulite facies metamorphism at 3100 m.y. Such an inferred reduction in the Sm/Nd ratio may have been the result of preferential loss of Sm relative to Nd, or introduction of a low Sm/Nd fluid with?Nd ≥ 0 during granulite facies metamorphism.  相似文献   

12.
In order to understand the evolution of the crust-mantle system, it is important to recognize the role played by the recycling of continental crust. Crustal recycling can be considered as two fundamentally distinct processes: 1) intracrustal recycling and 2) crust-mantle recycling. Intracrustal recycling is the turnover of crustal material by processes taking place wholly within the crust and includes most sedimentary recycling, isotopic resetting (metamorphism), intracrustal melting and assimilation. Crust-mantle recycling is the transfer of crustal material to the mantle with possible subsequent return to the crust. Intracrustal recycling is important in interpreting secular changes in sediment composition through time. It also explains differences found in crustal area-age patterns measured by different isotopic systems and may also play a role in modeling crustal growth curves based on Nd-model ages. Crustal-mantle recycling, for the most part, is a subduction process and may be considered on three levels. The first is recycling with only short periods of time in the mantle (<10 m.y.). This may be important in explaining the origin of island-arc and related igneous rocks; there is growing agreement that 1–3% recycled sediment is involved in their origin. Components of recycled crustal material, with long-term storage (up to 2.5 b.y.) in the mantle as distinct entities, has been suggested for the origin of ocean island and ultrapotassic volcanics but there is considerably less agreement on this interpretation. A third proposal calls for the return of crustal material to the mantle with efficient remixing in order to swamp the geochemical and isotopic signature of the recycled component by the mantle. This type of recycling is required for steady-state models of crustal evolution where the mass of the continents remains constant over geological time. It is unlikely if crust-mantle recycling has exceeded 0.75 km3/yr over the past 1–2 Ga.Good evidence exists that selective recycling is an important process. Sedimentary rocks preserved in different tectonic settings are apparently recycled at different rates, resulting in a bias in the sediment types preserved in the geologic record. Selective recycling has important implications for the interpretation of Nd model ages of old sedimentary rocks and in the analysis of accreted terranes. Although there is evidence that continental crust was formed prior to 3.8 Ga, the oldest preserved rocks do not exceed this age. It is likely that the intense meteorite bombardment, which affected the earth during the period 4.56–3.8 Ga, coupled with rapid mantle convection, which resulted from greater heat production, caused the destruction and probable recycling into the mantle of any early formed crust.Although crust-mantle recycling is seen as a viable process, it is concluded that crustal growth has exceeded crust-mantle recycling since at least 3.8 Ga. Intracrustal recycling has not been given adequate consideration in models of crustal growth based on isotopic data (particularly Nd model ages). It is concluded that crustal growth curves based on Nd model ages, while vastly superior to those based on K/Ar or Rb/Sr, tend to underestimate the volume of old crust, due to crust-mantle and/or intracrustal recycling.  相似文献   

13.
Archean komatiites, high-Mg basalts and tholeiites from the North Star Basalt and the Mount Ada Basalt formations of the Talga-Talga Subgroup, Warrawoona Group, Pilbara Block, Western Australia, define a linear correlation on the normal143Nd/144Nd vs.147Sm/144Nd isochron plot. The data give an age of 3712 ± 98 Ma and initialεNd(T) of +1.64 ± 0.40. The 3712 ± 98 Ma date is consistent with the regional stratigraphic sequence and available age data and the SmNd linear array may be interpreted as an isochron giving the eruption age of the Talga-Talga Subgroup. An alternative interpretation is that the isochron represents a mixing line giving a pre-volcanism age for the Subgroup. Consideration of geochemical and isotopic data indicates that the true eruptive age of the Talga-Talga Subgroup is possibly closer to about 3500 Ma. Regardless of the age interpretation, the new Nd isotopic data support an existence of ancient LREE-depleted reservoirs in the early Archean mantle, and further suggest that source regions for the Pilbara volcanic rocks were isotopically heterogeneous, withεNd(T) values ranging from at least 0 to +4.0.  相似文献   

14.
Analyses for major and trace elements, including REE, and Sr, Nd and Pb isotopes are reported from a suite of Siluro-Devonian lavas from Fife, Scotland. The rocks form part of a major calc-alkaline igneous province developed on the Scottish continental margin above a WNW-dipping subduction zone. Within the small area (ca. 15 km2) considered, rock types range from primitive basalts and andesites (high Mg, Ni and Cr) to lavas more typical of modern calc-alkaline suites with less than 30 ppm Ni and Cr. There is a marked silica gap between these rocks (< 62%) and the rare rhyolites (> 74%), yet the latter can be generated by fractional crystallization from the more mafic lavas. In contrast, variation in incompatible element concentrations and ratios in the mafic lavas can not be generated by fractional crystallization processes. Increasing SiO2 is accompanied by increasing Rb, K, Pb, U and Ba relative to Sr and high field strength elements, increasing LREE enrichment and increasing Sr calculated at 410 Ma, and by decreasing HREE, Eu/Eu*, Sm/Nd and Nd (410). Nd and Sr are roughly anticorrelated and have more radiogenic compositions than the mantle array, in common with data reported elsewhere from this part of the arc. The correlation extrapolates up to cross the mantle array within the composition field of the contemporary MORB source, and extrapolates down towards the probable compositional range of Lower Palaeozoic greywackes, which may form the uppermost 8 km of the crust, or may be supplied to the source by subduction. One sample, however, lies within the mantle array, and closely resembles lavas from northwestern parts of the arc, where a mantle source with mild time-integrated Rb/Sr and LREE enrichment has been inferred. The lavas have relatively high initial 207Pb/204Pb for their 206Pb/204Pb, a feature which has been interpreted elsewhere as the result of incorporation of a sediment component into arc magmas. The systematic changes with increasing SiO2 in isotopic and chemical parameters can be explained by mixing of a greywacke-derived component with depleted mantle. The various possible mixing mechanisms are discussed, and it is considered most likely that mixing occurred in the mantle source through greywacke subduction. The bulk of the Rb, K, Ba and Pb in the lavas is probably recycled from the crust, whereas less than some 40% of the Sr and Nd is recycled. The calc-alkaline chemical trends are solely a function of mixing with the sediment component.  相似文献   

15.
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are characterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first observed that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical characters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional mafic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.  相似文献   

16.
High-precision Nb, Ta, Zr, Hf, Sm, Nd and Lu concentration data of depleted mantle rocks from the Balmuccia peridotite complex (Ivrea Zone, Italian Alps) were determined by isotope dilution using multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) and thermal ionisation mass spectrometry (TIMS). The Zr/Hf ratios of all investigated samples from the Balmuccia peridotite complex are significantly lower than the chondritic value of 34.2, and the most depleted samples have Zr/Hf ratios as low as 10. Correlated Zr/Hf ratios and Zr abundances of the lherzolites preserve the trend of a mantle residue that has been depleted by fractional melting. This trend confirms experimental studies that predict Hf to behave more compatibly than Zr during mantle melting. Experimentally determined partition coefficients imply that the major Zr and Hf depletion most likely occurred in the spinel stability field, with (DZr/DHf)cpx≈0.5, and not in the garnet stability field, where (DZr/DHf)grt is probably close to one. However, minor amounts of melting must have also occurred in a garnet facies mantle, as indicated by low Sm/Lu ratios in the Balmuccia peridotites. The Nb/Ta ratios of most lherzolites are subchondritic and vary only from 7 to 10, with the exception of three samples that have higher Nb/Ta ratios (18–24). The overall low Nb/Ta ratios of most depleted mantle rocks confirm a higher compatibility of Ta in the mantle. The uniform Nb/Ta ratios in most samples imply that even in ‘depleted’ mantle domains the budget of the highly incompatible Nb and Ta is controlled by enrichment processes. Such a model is supported by the positive correlation of Zr/Nb with the Zr concentration. However, the overall enrichment was weak and did barely affect the moderately incompatible elements Zr and Hf. The new constraints from the partitioning behaviour of Zr–Hf and Nb–Ta provide important insights into processes that formed the Earth’s major silicate reservoirs. The correlation of Zr/Hf and Sm/Nd in depleted MORB can be assigned to previous melting events in the MORB source. However, such trends were unlikely produced during continental crust formation processes, where Sm/Nd and Zr/Hf are decoupled. The different fractionation behaviour of Zr/Hf and Sm/Nd in the depleted mantle (correlated) and the crust (decoupled) indicates that crustal growth by a simple partial melting process in the mantle has little effect on the mass budget of LREE and HFSE between crust and mantle. A more complex source composition, similar to that of modern subduction rocks, is needed to fractionate the LREE, but not Zr/Hf and the HREE.  相似文献   

17.
Nd and Sr isotope determinations on late Precambrian to early Palaeozoic igneous and sedimentary rocks from the Arabian Shield are used to investigate the proportion of reworked “older” crust, and the rate at which new crust was generated during the Pan African event. Eight Rb/Sr whole rock isochrons on igneous suites yield ages in the range 770?590 Ma and initial 87Sr/86Sr ratios of 0.7038?0.7023. These data confirm that magmatism in this area was largely restricted to the period 850-550 Ma, and the initial ratios are sufficiently low to preclude significant contributions from a long-lived upper crustal source. The initial 143Nd/144Nd ratios of a variety of lithologies, including several samples of possible “basement”, are all higher than the contemporaneous values for CHUR (εNd = +1.6 to +6.9), suggesting that many were derived directly from the upper mantle, and that any inferred crustal source regions for the remainder could not have separated from likely LREE-depleted mantle reservoirs before 1200 Ma. The Arabian Shield therefore provides an example of rapid crustal growth during the Late Proterozoic, and contrasts with the Damara intracratonic belt of Namibia where Nd and Sr isotopes provide strong evidence for extensive reworking of older continental crust during the same period.  相似文献   

18.
Application of the inversion technique described in Part I [1] to models in which the depleted (MORB) mantle is created by extraction of continental crust results in a stable and self-consistent set of model data, including estimates of uncertainties on all the parameters. The inversion shows that the mean age of the continents (and of the depleted mantle) is 2.14–2.46 b.y., and that the lower crust must be depleted in Rb by a factor of ~ 4 relative to the upper crust. The fraction of total mantle which has been depleted ranges over wide limits (30–90%) depending on: (a) whether the lower mantle is considered to be virgin, or somewhat depleted; (b) whether the depleted reservoir is represented in Sm/Nd and Rb/Sr systematics by average values of MORB, or by extreme values of MORB, and (c) whether the bulk earth Nd content is presumed to be similar to E or H chondrites, or is higher than all known meteorite classes. The usefulness of crust-mantle budget models in constraining such questions as whole mantle versus two-layer mantle convection will be enhanced by better data and understanding in these three key areas of geochemistry.  相似文献   

19.
Alkaline magmatism in the Southern Highlands Province, New South Wales, Australia is associated with continental rifting. Near-primary liquids have a wide range in Nd and Sr isotope composition that indicates gross isotopic and chemical heterogeneities in a mantle source region depleted in light rare earth elements (LREE) for much of Earth's history. The large-ion lithophile element and LREE-enriched nature of the primary lavas ((Ce)N = 95–182 and (Yb)N = 8.5–13.3) is consistent with an enriched mantle source region. This elemental enrichment may be accomplished by veining of the subcontinental mantle with volatile-rich phases like amphibole, apatite and carbonate which provide the volatile flux necessary to trigger anatexis.Degassing of mantle CO2 has led to migration of LREE-enriched fluids and local transformation of the lherzolitic mantle to pyroxenite veined by apatite ± kaersutite ± mica ± diopside. The mantle veining event may be related to upwelling of silica-undersaturated incompatible element-enriched magmas similar to the host magma of the Kiama xenoliths. In a relatively short period of time (100 m.y.), the Sr and Nd isotopes in essentially LREE-depleted mantle have evolved in response to low Sm/Nd and low Rb/Sr ratios, and now define a near-vertical vector on a isotope-isotope plot. From this rather unique signature we can infer that CO2- and LREE-rich, Rb-poor mantle is a potentially suitable mantle source region for the genesis of alkali-potassic volcanic rocks characterized by a narrow range in87Sr/86Sr ratio and a wide range in143Nd/144Nd ratio (e.g. Leucite Hills).  相似文献   

20.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by thein situSHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号