首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

2.
Nonlinear interactions between large waves and freely floating bodies are investigated by a 2D fully nonlinear numerical wave tank (NWT). The fully nonlinear 2D NWT is developed based on the potential theory, MEL/material-node time-marching approach, and boundary element method (BEM). A robust and stable 4th-order Runge–Kutta fully updated time-integration scheme is used with regriding (every time step) and smoothing (every five steps). A special φn-η type numerical beach on the free surface is developed to minimize wave reflection from end-wall and wave maker. The acceleration-potential formulation and direct mode-decomposition method are used for calculating the time derivative of velocity potential. The indirect mode-decomposition method is also independently developed for cross-checking. The present fully nonlinear simulations for a 2D freely floating barge are compared with the corresponding linear results, Nojiri and Murayama’s (Trans. West-Jpn. Soc. Nav. Archit. 51 (1975)) experimental results, and Tanizawa and Minami’s (Abstract for the 6th Symposium on Nonlinear and Free-surface Flow, 1998) fully nonlinear simulation results. It is shown that the fully nonlinear results converge to the corresponding linear results as incident wave heights decrease. A noticeable discrepancy between linear and fully nonlinear simulations is observed near the resonance area, where the second and third harmonic sway forces are even bigger than the first harmonic component causing highly nonlinear features in sway time series. The surprisingly large second harmonic heave forces in short waves are also successfully reproduced. The fully updated time-marching scheme is found to be much more robust than the frozen-coefficient method in fully nonlinear simulations with floating bodies. To compare the role of free-surface and body-surface nonlinearities, the body-nonlinear-only case with linearized free-surface condition was separately developed and simulated.  相似文献   

3.
A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger.  相似文献   

4.
5.
The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by doing parametric studies.  相似文献   

6.
《Ocean Engineering》2006,33(8-9):983-1006
Nonlinear waves and forces induced by a wedge-shape wave maker were simulated in a potential-theory-based fully nonlinear 2D Numerical Wave Tank (NWT). The NWT is developed in a time domain by using Boundary Element Method (BEM) including Mixed Eulerian–Lagrangian method (MEL) and Runge–Kutta 4th-order (RK4) integration as a time marching process. For ensuring accurate nonlinear free surface both material-node and semi-Lagrangian approach are independently developed for crosschecking. The acceleration-potential scheme is used for obtaining accurate time derivative of velocity potential. The developed NWT is utilized to calculate water particle velocity and a series of higher-harmonic force components on the wave maker. The added-mass and radiation-damping coefficients of the wave maker are also obtained from the least-square method. The simulation results are compared with the experimental and numerical results of other researchers. To compare the relative importance of free-surface and body-surface nonlinearities, a body nonlinear formulation is independently developed. Force by body nonlinear method is in good agreement with fully nonlinear result in case of low body-stroke frequency.  相似文献   

7.
Although the finite difference method is computationally efficient, it is acknowledged to be inferior when dealing with flow-over on structures with a complex geometry because of its rectilinear grid system. Therefore, we developed a numerical procedure that can cope with flow over structures with complex shapes while, at the same time, retaining the simplicity and efficiency of a rectilinear grid system. We used the immersed boundary method, which involves application of immersed boundary forces at solid boundaries rather than conventional boundary conditions, to investigate wave interactions with coastal structures in a three-dimensional numerical wave tank by solving the Navier–Stokes equations for two-phase flows. We simulated the run-up of a solitary wave around a circular island. Maximum run-up heights were computed around the island and compared with available laboratory measurements and previous numerical results. The three-dimensional features of the run-up process were analyzed in detail and compared with those of depth-integrated equations models.  相似文献   

8.
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations   总被引:1,自引:0,他引:1  
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe' s flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.  相似文献   

9.
Fully nonlinear wave-body interactions with surface-piercing bodies   总被引:1,自引:0,他引:1  
W.C. Koo  M.H. Kim   《Ocean Engineering》2007,34(7):1000-1012
Fully nonlinear wave-body interactions for stationary surface-piercing single and double bodies are studied by a potential-theory-based fully nonlinear 2D numerical wave tank (NWT). The NWT was developed in time domain by using boundary element method (BEM) with constant panels. MEL free surface treatment and Runge–Kutta fourth-order time integration with smoothing scheme was used for free-surface time simulation. The acceleration-potential scheme is employed to obtain accurate time derivative of velocity potential. Using the steady part of nonlinear force time histories, mean and a series of higher-harmonic force components are calculated and compared with the experimental and numerical results of other researchers. The slow-decaying second-harmonic vertical forces are investigated with particle velocities and corresponding body pressure. Typical patterns of two-body interactions, shielding effect, and the pumping/sloshing modes of water column in various gap distances are investigated. The pumping mode in low frequencies is demonstrated by the comparison of velocity magnitudes.  相似文献   

10.
孤立波与带窄缝双箱相互作用模拟研究   总被引:1,自引:1,他引:0  
针对孤立波与带窄缝双箱的作用问题,应用时域高阶边界元方法建立了二维数值水槽。其中,自由水面满足完全非线性运动学和动力学边界条件,对瞬时自由表面流体质点采用混合欧拉-拉格朗日法追踪,采用四阶龙格库塔法对下一时刻的自由水面的速度势和波面升高进行更新。采用加速度势法求解物体湿表面的瞬时波浪力。采用推板方法生成孤立波。通过模拟孤立波在直墙上的爬高以及施加在直墙上的波浪力,并与已发表的实验和数值结果对比,验证本数值模型的准确性。通过数值模拟计算研究了窄缝宽度、方箱尺寸对波浪在箱体迎浪侧爬高,窄缝内波面升高,箱体背浪侧透射波高及箱体受波浪荷载的影响。同时研究了有一定时间间隔的双孤立波与带窄缝双箱系统作用问题。  相似文献   

11.
柏威  滕斌 《海洋工程》2001,19(3):43-50
采用二阶时域理论对非线性波浪在任意三维物体周围的绕射问题进行了研究,对自由表面边界条件进行Taylor级数展开,应用摄动展开可以建立相应的边值问题,而且此边值问题的计算域不随时间变化,运用基于B-样条的边界元方法求解每一时刻的波浪场,二阶自由表面边界条件在时间上进行数值积分,在自由表面加了一个人工阻尼层以避免波浪的反射,速度势分解为已知的入射势和未知的散射势,初始条件采用二阶Stokes波浪场,通过加入物体表面边界条件,得到散射势在时间和空间上的发展,本文对圆柱所受规则波的二阶波浪力和波浪爬高进行了计算,数值结果表明此理论计算准确,效率高,数值稳定。  相似文献   

12.
This paper addresses a numerical investigation of nonlinear waves interactions with an array of two surface-piercing vertical cylinders and the corresponding nonlinear hydrodynamic loads on each individual cylinder. The primary interest of this study is concentrated on the problem of three-dimensional scattering of solitary waves by cylinder arrays and the nonlinear interactions between scattered waves. The theoretical model adopted for simulation is the generalized Boussinesq two-equation model. The boundary-fitted coordinate transformation and multiple-grid technique are utilized here to simplify the computation domain and to facilitate the applications of the boundary conditions on the cylinder surfaces. The velocity potential, free-surface elevation and subsequent evolution of the scattered wave field are numerically evaluated. The hydrodynamic forces on each cylinder during wave impact are also determined. A study of the sheltering effect by the neighboring structures on wave loads is conducted. It is found that the presence of the neighboring cylinder has shown significant influence on the wave loads and the scattering of the primary incident waves. For two transversely arranged cylinders, the transverse force coefficient increases as the separation distance decreases.  相似文献   

13.
本文基于具备间断捕捉能力的二阶全非线性Boussinesq数值模型,对规则波和随机波在礁坪地形上的传播变形进行了数值模拟。该模型采用高阶有限体积法和有限差分方法求解守恒格式的控制方程,将波浪破碎视为间断,同时采用静态重构技术处理了海岸动边界问题。重点针对礁坪上波浪传播过程中的波高空间分布和沿程衰减,礁坪上的平均水位变化,以及波浪能量频谱的移动和空间差异等典型水动力现象开展数值计算。将数值结果与实验结果对比,两者吻合情况良好,验证了模型具有良好的稳定性,具备模拟破碎波浪和海-岸动边界的能力,能较为准确地模拟波浪在礁坪地形上的传播过程中发生的各种水动力现象。  相似文献   

14.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

15.
Linear and nonlinear irregular waves and forces in a numerical wave tank   总被引:4,自引:0,他引:4  
A time-domain higher-order boundary element scheme was utilized to simulate the linear and nonlinear irregular waves and diffractions due to a structure. Upon the second-order irregular waves with four Airy wave components being fed through the inflow boundary, the fully nonlinear boundary problem was solved in a time-marching scheme. The open boundary was modeled by combining an absorbing beach and the stretching technique. The proposed numerical scheme was verified by simulating the linear regular and irregular waves. The scheme was further applied to compute the linear and nonlinear irregular wave diffraction forces acting on a vertical truncated circular cylinder. The nonlinear results were also verified by checking the accuracy of the nonlinear simulation.  相似文献   

16.
This study investigates the initialization of nonlinear free-surface simulations in a numerical wave flume.Due to the mismatch between the linear input wavemaker motion and the kinematics of fully nonlinear waves,direct numerical simulations of progressive waves,generated by a sinusoidally moving wavemaker,are prone to suffering from high-frequency wave instability unless the flow is given sufficient time to adjust.A time ramp is superimposed on the wavemaker motion at the start that allows nonlinear free-surface simulations to be initialized with linear input.The duration of the ramp is adjusted to test its efficiency for short waves and long waves.Numerical results show that the time ramp scheme is effiective to stabilize the wave instability at the start of the simulation in a wave flume.  相似文献   

17.
In this paper, motion response of a moored floating structure interacting with a large amplitude and steep incident wave field is studied using a coupled time domain solution scheme. Solution of the hydrodynamic boundary value problem is achieved using a three-dimensional numerical wave tank (3D NWT) approach based upon a form of Mixed-Eulerian–Lagrangian (MEL) scheme. In the developed method, nonlinearity arising due to incident wave as well as nonlinear hydrostatics is completely captured while the hydrodynamic interactions of radiation and diffraction are determined at every time step based on certain simplifying approximations. Mooring lines are modelled as linear as well as nonlinear springs. The horizontal tension for each individual mooring line is obtained from the nonlinear load-excursion plot of the lines computed using catenary theory, from which the linear and nonlinear line stiffness are determined. Motions of three realistic floating structures with different mooring systems are analyzed considering various combinations of linear and approximate nonlinear hydrodynamic load computations and linear/nonlinear mooring line stiffness. Results are discussed to bring out the influence and need for consideration of nonlinearities in the hydrodynamics and hydrostatics as well as the nonlinear modelling of the line stiffness.  相似文献   

18.
近岸植被对波浪爬坡具有一定的衰减作用。在自然界中,由于植被的死亡、再生或人为破坏等原因,近岸植被通常呈片状分布,且其内部分布也是不均匀的。本文以完全非线性Boussinesq方程为基础,引入植被作用项,建立了模拟近岸植被区波浪传播的数值模型,验证了模型可靠性,进而采用该模型模拟分析了片状分布植被对孤立波爬高的影响。数值模拟结果表明,片状分布植被能有效减小孤立波爬高;对于均匀分布的片状植被,高密度片状植被对孤立波爬高的消减效果优于低密度片状植被;对于相同密度、不同分布形式的片状植被,均匀分布的片状植被对孤立波的消减效果优于不均匀分布的片状植被;对于不均匀分布的片状植被,前密后疏的片状植被对孤立波的消减效果优于前疏后密的片状植被。  相似文献   

19.
A numerical method for non-hydrostatic, free-surface, irrotational flow governed by the nonlinear shallow water equations including the effects of vertical acceleration is presented at the aim of studying surf zone phenomena. A vertical boundary-fitted grid is used with the water depth divided into a number of layers. A compact finite difference scheme is employed for accurate computation of frequency dispersion requiring a limited vertical resolution and hence, capable of predicting the onset of wave breaking. A novel wet–dry algorithm is applied for a proper handling of moving shoreline. Mass and momentum are strictly conserved at discrete level while the method only dissipates energy in the case of wave breaking. The numerical results are verified with a number of tests and show that the proposed model using two layers without ad-hoc assumptions enables to resolve propagating nonlinear shoaling, breaking waves and wave run-up within the surf and swash zones in an efficient manner.  相似文献   

20.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号