首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The till-covered organic sediments at Leveäiemi, Swedish Lapland have been reinvestigated by pollen analysis in order to gather more detailed information on vegetation history and climatic conditions during the interglacial period represented at this site. A partly different picture of the vegetation succession has arisen compared to earlier studies and results. The organic sequence is still correlated with the Eemian, but the forests were probably more open during the initial and later parts of the interglaciation than suggested earlier. This is based on the higher values of Juniperus pollen noted, and a continuous curve for Populous pollen during the PAZ representing the later part of the interglaciation. Comparisons are made with other sites in northern Sweden, Finland and northern Norway, and the possibilities of separating Eeinian deposits from those formed during the Holsteinian interglaciation are discussed.  相似文献   

2.
Robertsson, A.-M., Svedlund, J.-O., Andrén, T. & Sundh, M. 1997 (September): Pleistocene stratigraphy in the Dellen region, central Sweden. Boreas, Vol. 26, pp. 237–260. Oslo. ISSN 0300–9483. The Pleistocene stratigraphy in the Dellen region, central Sweden was studied using field observations made during mapping of Quaternary deposits and fabric analyses in excavated sections. The lithostratigraphy was also studied by seismic refraction measurements, analyses of grain-size distribution and organic carbon content. Biostratigraphical methods applied were pollen and diatom analyses. A general outline of the Pleistocene stratigraphy in the area is presented. Three different till beds are identified, the lowermost suggested to have been deposited during the Saalian glaciation and the other two during the Weichselian glaciation. According to the interpretation of the stratigraphy, it is questioned whether the first Weichselian ice sheet did in fact reach the Dellen area. A clayey sediment sequence at Norra Sannas accumulated during an interglacial, probably the Eemian. Most of the interglacial vegetation succession is reflected in the identified pollen flora. An initial phase with a light-demanding forest of Belula and Pinus was followed by immigration of Alnus, Picea and scattered occurrences of Corylus. A freshwater diatom flora was identified dominated by plankton taxa, e.g. Aulacoseira italica, A. distans and Cyclotella spp. In the lower part of the sequence a brackish-marine flora was registered, representing accumulation in a bay of the Eemian Sea. Fine-grained sediments at the Sundson and Vastansjd sites are interpreted as rebedded Eemian sediments according to the pollen flora. An (Early Weichselian) interstadial age is suggested for sediments found at Bjuraker. Dating by the 14C- and OSL methods was carried out on the interglacial and interstadial sediments, respectively. The ages range from approximately 19000 to 92000 BP. Correlation of interglacial vegetation history with central Finland and other areas is discussed.  相似文献   

3.
The till-covered clay and silt deposits at Mertuanoja, Pohjanmaa (Ostrobothnia), western Finland, have been investigated in great detail. The Eemian interglacial environment is reconstructed here on the basis of pollen, diatom and dinoflagellate analyses. The pollen stratigraphy shows an interglacial vegetational succession reflecting stable climatic conditions typical of the Eemian Stage in the Pohjanmaa area. The initial Betula forests were followed by Pinus-Betula forests with Quercus. The next successional phase was dominated by Betula, Pinus and Alnus; temperate deciduous trees and Corylus also grew in the area. Later, Picea advanced and temperate deciduous trees declined. Some Corylus was, however, still present and thermophilous Osmunda thrived in wet places. The diatom record indicates that the sediments were deposited first in a freshwater basin, then in the Eemian Baltic Sea, and finally in a freshwater basin once more. The presence of dinoflagellates demonstrates that the Eemian Baltic Sea, when at its maximum extent, was connected to the Atlantic Ocean, which brought northern cool-temperate surface waters to Finland as far north as Mertuanoja. Mertuanoja is the first interglacial site at which numerous dinoflagellate cysts were encountered in Finnish Quaternary sediments.  相似文献   

4.
Several till-covered organic deposits, principally lake gyttja, in Finnish Lapland have been correlated with the last (i.e. Eemian) interglacial on the basis of their lithostratigraphic position and pollen stratigraphy. Most of the sequences are short, but together with three longer sequences from Finnish Lapland and one from Swedish Lapland (Leveäniemi) they provide a complete picture of Eemian vegetational and climatic development. The Tepsankumpu site was revisited, and the till-covered thick freshwater gyttja deposit was studied in detail for pollen in order to search for signals of rapid climatic fluctuations postulated for the earlier part of the Eemian on the basis of Greenland ice core studies. The Eemian pollen stratigraphy in Finnish Lapland closely resembles the Holocene pollen stratigraphy of the area. The abundance of spruce and alder pollen suggests, however, more northerly limits for forest vegetation zones during the Eemian than during the Holocene. Oak also grew closer to Lapland, indicating a wanner climate than during the Holocene climatic optimum. The Tepsankumpu pollen stratigraphy indicates climatic stability over the entire time-span it covers, i.e. the major part of the interglacial. This finding is in conflict with results from Greenland GRIP ice core studies and interpretations of some Continental European Eemian pollen diagrams.  相似文献   

5.
A new investigation of the coastal cliff section at Mommark in southern Denmark has revealed a complete Eemian interglacial sequence for the first time in the southwestern Baltic area. Environmental changes through the lacustrine and marine interglacial deposits are discussed on the basis of foraminiferal assemblages and stable isotope composition as well as ostracods. In general, the assemblages indicate relatively high temperatures throughout the Eemian, and the Lusitanian foraminiferal species Pseudoeponides falsobeccarii Rouvillois has been reported for the first time from the Eemian of northwest Europe. A floating chronology of the deposits is based on a previously published correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. An initial early Eemian lacustrine phase, with ostracodal indication of deposition in a large freshwater lake, lasted until c. 300 years after the beginning of the interglacial, i.e. to the transition between the regional pollen zones E2 and E3. After that, marine conditions persisted almost throughout the interglacial, and the Cyprina Clay was deposited. The foraminiferal and ostracodal assemblages indicate that relatively deep water prevailed in the area until c. 6000 years after the beginning of the interglacial. However, both the foraminiferal assemblages and the oxygen isotope results show that a trend from relatively high salinity to lower salinity conditions had begun already at about 4000 years. After c. 6000 years the fauna indicates a gradual change to shallower water and further reduction in salinity, the latter also being reflected by a general decrease in the oxygen isotope values. The marine deposition ended at c. 10 600 years after the beginning of the Eemian, i.e. within the topmost part of pollen zone E7. This was succeeded by a late Eemian and early Weichselian freshwater phase.  相似文献   

6.
Gao, C. & Boreham, S. 2010: Ipswichian (Eemian) floodplain deposits and terrace stratigraphy in the lower Great Ouse and Cam valleys, southern England, UK. Boreas, 10.1111/j.1502‐3885.2010.00191.x. ISSN 0300‐9483. Thick argillaceous deposits named the Mannings Farm Beds recently uncovered in the third terrace at Mannings Farm near Willingham, Cambridgeshire contain a pollen sequence covering the transitions from Ipswichian/Eemian substages I to II and II to III, when oak and hornbeam expanded, respectively. This is the longest record hitherto obtained in Britain, providing important insight into the major forest successions in this temperate stage. The frequent occurrence of Ipswichian deposits in the third terrace suggests the development of an extensive floodplain on the valley bottom, similar to the case for the present‐day lower Great Ouse and Cam. The Mannings Farm Beds testify to a complete interglacial sequence emplaced between cold‐climate gravels that was directly associated with the terrace development. The third terrace developed during the Ipswichian and the preceding and succeeding cold stages. Major river downcutting, which shaped the third terrace, occurred during the Early Devensian/Weichselian. Previously reported interglacial fossils from this terrace that are inconsistent with an Ipswichian affinity are probably reworked material derived from pre‐Ipswichian interglacial deposits, or their significance as biostratigraphical indicators needs to be confirmed. The second and first terraces developed from the late Early Devensian onwards. Ipswichian deposits filling flood‐scoured deep channels in bedrock are preserved locally below these low terraces.  相似文献   

7.
《Quaternary Science Reviews》2007,26(11-12):1557-1609
High-resolution diatom analysis was carried out to assess the limnological and climatic changes that took place at Ribains maar (French Massif Central) during the Late Pleistocene (∼131–∼105 ka BP), with a focus on the Eemian interglacial in particular. Numerical analyses were used to show that most of the variability in the fossil diatom assemblages was due to climate independently from the changes in the lake catchment vegetation (as represented by pollen data). Diatom-based quantitative reconstructions of the past limnological conditions, as well as a comprehensive literature review on the auto-ecological requirements for the principal diatom taxa, were used to interpret the record. An absolute time-scale for the sequence was derived by matching the major pollen shifts with the radiometrically dated changes in oxygen isotopes observed in Italian stalagmites. This study shows that at Ribains maar, the transition from the Riss (=Saalian) Glacial to the Eemian interglacial was marked by a gradual increase in the contribution of spring-blooming diatom species, indicating a longer growing season and milder winter/spring conditions at that time. A short cooling event interrupts this trend and may correspond to a stadial. At the start of the Eemian a peak in benthic taxa and the suppression of spring-blooming flora probably reflects the effects of deglaciation on the catchment. During the Eemian interglacial itself three main phases were distinguished within the diatom record. The first phase (∼8000 years in duration) was dominated by Stephanodiscus minutulus, which suggests that intense mixing in the water-column took place during spring. The pollen record was simultaneously dominated by Quercus and Corylus that typify this phase as the climatic optimum of the Eemian. The second phase, almost equal in duration to the first phase (∼7000 years), is generally dominated by Cyclotella taxa and suggests a less productive lake and much reduced period of spring mixing compared with the first phase. In the pollen diagram this corresponds to an interval dominated by Carpinus–Picea–Abies that indicates a cooler and wetter climate. The third and last phase of the Eemian, ∼2000 year long, saw the return to Stephanodiscus-dominated assemblages, indicating a warming that may correspond to the Dansgaard–Oeschger event 25 identified in the Greenland ice-core record. In the early stage of the Würm Glacial (=Weichselian), assemblages in the Melisey I stadial (∼3000 year long) were dominated by either Aulacoseira subarctica or Asterionella formosa, which suggest colder spring conditions than during the late Eemian, but not as cold as the ones indicated by the pollen record. Stephanodiscus spp. again dominate during the Saint-Germain Ia interstadial (∼5000 year long) suggesting a return to the conditions that prevailed before the Melisey stadial, in agreement with the pollen record. The record ends with the Montaigu cold event, which is characterised by a Pinus peak in the pollen record, and corresponds to a large abundance of A. subarctica in the diatom sequence. Throughout the Eemian the abundance of Stephanodiscus spp., which is thought to be driven by winter conditions, show cyclic fluctuations that most likely match the cooling events identified in a pollen record from Germany. Variation in insolation throughout the Eemian may have been the driving factor behind the species succession observed in the diatom sequence. While this study demonstrates that diatom analysis of lake sediment can provide very detailed information on long-term climate change, a review of the few other diatom investigations published on European Eemian deposits shows that this technique has been so far seldom used to its full potential in this context in central and southern Europe.  相似文献   

8.
The Mommark sequence represents a nearly complete record of sedimentation in the Eemian (MIS 5e), and the diatom succession covers almost the entire interglacial. A floating chronology of the deposits is based on correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. The diatom succession starts with a short freshwater stage followed by a similarly episodic transitional brackish phase, which began c. 300 years after the beginning of the Eemian interglacial. A few hundred years later, simultaneously with the start of deposition of the shallow marine sediment, Cyprina Clay, the flora turns almost fully marine, suggesting salinities clearly higher than at present. The culmination of the marine transgression occurs close to the climatic optimum of the Eemian interglacial, c. 3000 years after the beginning of the interglacial. In the several metres thick Cyprina Clay, only marginal changes in the composition of diatom taxa are noticed. According to the diatom stratigraphy and chronostratigraphy based on regional pollen zones, the total duration of the Eemian Sea phase with brackish/marine conditions was c. 10 500 years. As the sedimentation of the Cyprina Clay ends, the proportions of diatom species thriving in freshwater increase, but the marine taxa remain common. The mixture of species with non-compatible ecological requirements suggests allochthonous input from freshwater and/or tidal estuary environment. The results of this study are consistent with studies of other aquatic fossil assemblage data from this site.  相似文献   

9.
Seventy-four meters of a 95-m-long drill core recovered from the Lappäjarvi crater, a meteoritic impact site in western Finland, consisted of Pleistocene sediments. These sediments refer to two events of glacial deposition (Saalian and Weichselian) interrupted by non-glacigenic freshwater sedimentation. The sediments contain abundant redeposited Holsteinian and Tertiary microfossils, and possibly represent a pre-Weichselian interstadial not described from elsewhere in Finland. The pollen flora indicates a mixed primary arctic to subarctic succession that followed deglaciation, i.e. the beginning of an interglacial or interstadial event. The secondary pollen component derives from an eroded interglacial deposit that can be interpreted as Holsteinian, or possibly Eemian, in age. The vegetation succession interpreted from the primary pollen flora reflects a transition from arctic conditions to subarctic birch forests. The diatom flora indicates a primary succession that can be observed clearly in the uppermost gyttja layer in which the rich alkaliphilous diatom flora refers to more or less eutrophic conditions. The diatom flora of sediments below the gyttja layer is composed of a primary component and a secondary, redeposited or relict component. The diatoms encountered are interglacial or Tertiary in origin. The results show that meteorite craters can provide long, representative stratigraphic sequences in glacially eroded Precambrian shield areas such as Finland.  相似文献   

10.
A Late Pleistocene sequence at Margreteberg, southwestern Sweden   总被引:1,自引:0,他引:1  
At Margreteberg, southwestern Sweden, a comple Pleistocene sequence has been stratigraphically investigated. Strata of clay, silt, sand, peat and solifluction layers are overlain by till-like sediments which are covered by sandy-clayey strata. By means of biostratigraphical analyses (foraminifera, olluscs, wood remains, pollen and diatoms), a reconstruction of the palaeoenvirnmental development has been obtained. Radiocarbon measurements and amiono acis ratios have been carried out in order to date the sediments. The foraminifera in the lowermost clay strata indicate Arctic or boreal-Arctic marine environment during the Late Saalian or Late Elsterian perods The δ18 Ovalues and molluscs also suggest that the clay was deposited in glaciomarine conditions. Amino acid ratios (D/L=0.25) of Hiatella in the clay imply an age between the Holsteinian and Eemian Interglacials. Teh peat layers contain a pollen flora. Prtedominated by Picea and Pinus, and are pollen analytically dated to the end of the Eemian interglacial. The solofluction sediments most probably were fromed during the first stage (s) of the Early weichselian and may include the initaial phase of the Brorup Interstadial (the Rodebaek interstadial). During this stage(s) aretic-Subarctic conditions previaled reflected by a pollen flora with a predominance of herbs and shrubs. Acidophilous and aerohpilous diatoms indicate oligotrophic shallow wate conditions in an Arctic environment, when almost no leaching of mineral solis occurred. The solofluction sediments also contain reworked interglacial (Eemian) pollen and brackish-Marine diatoms. Radiocarbon dating of the peat, wood and solofluction sediments yieded infinnite ages>40,000B.P.  相似文献   

11.
The modern drainage system of central Poland developed during the Holsteinian, but it originated from the Elsterian glacial tunnel valleys and deglacial residual overflow lakes. In spite of occupation of this area by the Wartanian ice sheet and the following formation of the landscape during deglaciation, a similar river network was renewed during the Eemian. During the Weichselian the Middle Vistula valley was subjected to widespread ice-dam deposition. This resulted in rise of the base level of erosion and in westward deflection of the runoff, connected with development of the Central European spillways. The presented reconstruction of the Middle and Late Pleistocene fluvial network shows that the Holstein and Eemian sea levels were the driving force for river system development in central Poland. The Holstein and Eemian sea levels were very close to the present water level of the Baltic Sea. They made interglacial fluvial patterns roughly similar to the contemporary one, and therefore the main watersheds have been only slightly modified since that time. However, due to the considerable southward extension of the sea during the Eemian and presumably also during the Holsteinian, buried interglacial river deposits in central Poland occur at present well beneath the Holocene alluvia.  相似文献   

12.
Organic‐rich deposits, uncovered during overburden removal from mantled gypsum karst at Knocknacran opencast gypsum mine, Co. Monaghan, are the best candidate to date for a last interglacial record in Ireland. The two till and organic‐rich deposits (preserved at different quarry elevations) were emplaced on to a Tertiary dolerite surface during high‐energy flood events and subsequently folded and faulted by movement towards sinkholes in underlying gypsum. Uranium–thorium disequilibrium dating suggests that the organic‐rich deposits in the upper section were hydrologically isolated at ca. 41 ka and those in the lower section at ca. 86 ka. Interpretation of the pollen content, although tentative because of the depositional and post‐depositional history of the material, suggests that the organic material originated in a warm stage possibly warmer than the post‐Eemian interstadials. The unusual setting of preservation may indicate that in situ, last interglacial deposits have generally been removed by erosion in Ireland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Molluscan fossils collected from shallow water marine sediment across NW Europe and nearby Arctic regions have been analysed for the extent of isoleucine epimerization ( ratio) in indigenous protein residues. The ratios confirm that essentially all ‘classical’ Eemian sites from NW Europe are of the same age, and are correlative with the type locality near Amersfoort in the Netherlands; shells from interglacial marine sediment beneath the type Weichselian till in Poland also correlate with the type Eemian site. ratios in Holsteinian marine shells (0.29) are substantially higher than in their Eemian counterparts (0.17); ‘Late Cromerian’ shells yield even higher ratios (0.46). ratios in late glacial shells (0.06) and Middle Weichselian shells (0.09) permit differentiation from modern (0.01) and last interglacial material. Based on the position of the Matuyama-Brunhes boundary and the differences in ratios, the Eemian must correlate with isotope substage 5e, whereas the Holsteinian is most likely substage 7c, possibly stage 9 but certainly younger than stage 11. Intra-Saalian warm periods may be terrestrial equivalents of the younger substages of stage 7. Extensive pre-Eemian marine sediments along the SW coast of Denmark previously correlated with the Holsteinian are shown to be of ‘Late Cromerian’ age. The underlying till there is the first widespread evidence of a pre-Elsterian till in NW Europe. ratios in molluscs from last interglacial sites along the Arctic coast of the USSR, the Arctic Islands and eastern Greenland are substantially lower than in their European counterparts due to their low thermal histories. The combined mid- and high-latitude data are used to develop a predictive model for the expected ratio in any of several moderate epimerization-rate taxa for last interglacial sites with mean temperatures between −20 and +15°C.Not all sites could be unambiguously assigned to an established interglacial. The Fjøsanger (Norway) and Margareteberg (Sweden) sites previously thought to be Eemian, yield ratios higher than in secure nearby Eemian material. It is yet unresolved whether these are aberrant sites or if they predate the last interglacial. In situ shoreline deposits encountered in borings in SW Belgium and in exposures on the Belgium coastal plain contain molluscs that yield ratios intermediate between secure Eemian and Late Weichselian ratios, raising the possibility that a late stage 5 high-sea-level event attained near-modern levels in the southern North Sea basin. Resolution of these uncertainties is the focus of future work.  相似文献   

14.
The bio- and chronostratigraphy of the Eemian interglacial (marine isotope substage 5e) and an Early Weichselian glaciation (5d-a) established from representative and detailed sequences can be correlated with the deep-sea oxygen isotope stratigraphy, ice-core data, sea-level fluctuations and coupled ice sheet-climate models. Biostratigraphic sequences from Fennoscandian key sections are correlated with reference sequences from Estonia and from sections located near or beyond the margins of the last glaciation. Organic sediments previously attributed to Early and Middle Weichselian interstadial periods in Finland are argued to be redeposited and mixed older (last interglacial) material. Pollen and diatom spectra of the undisturbed materials suggest that the Eemian climatic optimum was followed by a continuously cooling climate and a regressive marine level. If only undisturbed sequences are considered, the major climatic fluctuations of the Early Weichselian, apparent in Central and Western Europe, are not apparent in the sequences from the central part of the glaciated terrain. Instead, some sequences are truncated by sediments indicating approaching ice sheets soon after the interglacial. This may imply that the ice sheet grew over Finland during the first Early Weichselian stadial. The preservation of the interglacial beds and the lack of younger non-glacial sediments support the interpretation that the area remained ice-covered until the final deglaciation. During the Early Weichselian, the Norwegian coast was probably occasionally ice free, similar to the coastal zone of Greenland today. The authors' interpretation of the Fennoscandian organic deposits of the last glaciation may also explain similar observations from the central parts of the Laurentide ice sheet.  相似文献   

15.
Velichko, A. A., Novenko, E. Y., Pisareva, V. V., Zelikson, E. M., Boettger, T. & Junge, F. W. 2005 (May): Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data. Boreas , Vol. 34, pp. 207–219. Oslo. ISSN 0300–9483.
The article discusses pollen data from Central and Eastern Europe and provides insight into the climate and vegetation dynamics throughout the Eemian interglacial (including preceding and succeeding transitional phases). Three sections with high resolution pollen records are presented. Comparison of the data indicates that the range of climatic and environmental changes increased from west to east, whereas the main phases of vegetation development appear to have been similar throughout the latitudinal belt. At the interglacial optimum, the vegetation in both Central and Eastern Europe was essentially homogeneous. An abrupt change marks the Saalian/Eemian boundary (transition from OIS 6 to OIS 5e), where environmental fluctuations were similar to those detected at the transition from the Weichselian to the Holocene (Allerød and Dryas 3). Transition from the Eemian to the Weichselian was gradual in the western part of the transect, with forest persisting. In the east, fluctuations of climate and vegetation were more dramatic; forest deteriorated and was replaced by cold open landscapes.  相似文献   

16.
This paper discusses the dating of stratigraphically important Quaternary sequences from a site near Fenit, Co. Kerry, which have been the subject of debate since they were first described by Mitchell in 1970. The overall stratigraphy of the Quaternary deposits have been investigated and detailed analyses of the organic material carried out. Pollen from biogenic sediments have been analysed and samples of peat dated using the uranium-thorium disequilibrium method. The pollen assemblages match no others previously recorded in Ireland and appear to represent a cool temperate phase following the last interglacial. The uranium-thorium dates of between 114000 and 123 000 yr BP indicate that the deposit dates from Oxygen Isotope Stage 5, possibly post-dating the last temperate stage (the Eemian Stage interglacial; Oxygen Isotope Substage 5e). The dating of this deposit and the realisation that it is not penultimate temperate stage (Gortian) in age invalidates much recent speculation on the age of the Gortian interglacial.  相似文献   

17.
The classical region of the Holsteinian interglacial is in the vicinity of Hamburg and the Lower Elbe. It is defined on the basis of pollen and is clearly distinguishable from the Eemian interglacial (Hallik, 1960; Müller, 1974). The Holsteinian interglacial is represented by a sequence of sediments up to 100 m in thickness. These consist of limnic, fluvial, and marine beds and show a transgression up to the height of present sea-level.Twenty-seven molluscs from Holsteinian deposits were used for ESR dating. The ages show that the Holsteinian may be correlated with stage 7 of the deep sea record V28-238 (Shackleton and Opdyke, 1973).  相似文献   

18.
A complete interglacial cycle, named the Fjøsangerian and correlated with the Eemian by means of its pollen stratigraphy, is found in marine sediments just above the present day sea level outside Bergen, western Norway. At the base of the section there are two basal tills of assumed Saalian ( sensu lato ) age in which the mineralogy and geochemistry indicate local provenance. Above occur beds of marine silt, sand and gravel, deposited at water depths of between 10 and 50 m. The terrestrial pollen and the marine foraminifera and molluscs indicate a cold-warm-cold sequence with parallel development of the atmospheric and sea surface temperatures. In both environments the flora/fauna indicate an interglacial climatic optimum at least as warm as that during the Holocene. The high relative sea level during the Eemian (at least 30 m above sea level) requires younger neotectonic uplift. The uppermost marine beds are partly glaciomarine silts, as indicated by their mineralogy, drop stones and fauna, and partly interstadial gravels. The pollen indicates an open vegetation throughout these upper beds, and the correlation of the described interstadial with Early Weichselian interstadials elsewhere is essentially unknown. The section is capped by an Early Weichselian basal till containing redeposited fossils, sediments, and weathering products. Several clastic dikes injected from the glacier sole penetrate the till and the interglacial sediments. Radiocarbon dates on wood and shells gave infinite ages. Amino acid epimerization ratios in molluscs support the inferred Eemian age of the deposit. The Fjøsangerian is correlated with the Eemian and deep sea oxygen isotope stage 5e; other possible correlations are also discussed.  相似文献   

19.
Tidal deposits dating from the penultimate interglacial (Oxygen Isotope Stage 7) are preserved on a bank of the River Seine at Tancarville. The foraminiferal assemblages indicate a gradual cooling towards Arctic conditions, which corresponds to the onset of the penultimate cold period. This cooling started before or during the drop in sea level in Europe, in contrast to the situation at the end of the last interglacial (Eemian) when Europe remained warm even during the period of falling sea level.  相似文献   

20.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号