首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
济源凹陷是以华北古生界地台为基底,经过复杂构造演化形成的中—新生代叠合盆地。其成藏体系复杂,可能经历多期油气充注、破坏及改造,而中生界油气成藏时期尚未盖棺定论。储层中流体包裹体保留了许多重要信息,如温度、压力、流体成分、古环境特征等,在鉴别烃源岩热演化阶段和油气的生成、油气充注期次的划分、流体古压力恢复、油气成藏过程剖析中发挥重要作用。为了解济源凹陷中生界油气成藏时期,在下侏罗统鞍腰组和上三叠统谭庄组两套主要烃源岩的热演化研究基础之上,运用流体包裹体系统分析方法以及均一温度-埋藏史间接投影定年法,分析了济源凹陷中生界流体包裹体特征,进而对油气成藏期次进行划分。研究结果表明:济源凹陷中生界储层捕获了7种赋存状态的烃类包裹体,包括蓝绿色、黄绿色和蓝色3种不同荧光颜色的油包裹体以及纯气相包裹体;根据包裹体颜色、均一温度测定及宿主矿物产状、成岩次序等特征,认为至少发生过3期油充注(163 Ma、101~95 Ma和27~23.8 Ma)和1期天然气充注(119~115 Ma)。  相似文献   

2.
丽水—椒江凹陷是东海陆架盆地油气勘探的一个重要领域,目前处于较低的油气勘探阶段。基于现有地质资料,在烃源岩发育特征及有机质丰度、类型和成熟度分析的基础上,采用含油气盆地数值模拟技术,定量恢复了研究区月桂峰组烃源岩的生排烃史。结果表明,月桂峰组烃源岩有机质丰度高,有机质类型以Ⅱ1型和Ⅱ2型为主,具有油气兼生的能力,总体上处于成熟阶段和高成熟阶段;月桂峰组烃源岩具有较高的生排烃强度,总体上经历了2次生排烃过程,但在不同构造单元存在明显的差异性。总之,以月桂峰组烃源岩为油气来源的含油气系统是该区油气勘探的主要目标。  相似文献   

3.
综合运用地质、钻井、生物标志物、碳同位素、储层流体包裹体等资料,在油气分布特征和来源分析的基础上,探讨了控制西湖凹陷孔雀亭气田油气成藏及富集的主要因素。研究结果表明,孔雀亭气田油气主要分布在始新统平湖组储层内,具有"上油下气"的纵向分布特征,以断块型凝析气藏为主,原油及天然气来源于自身和西部次洼平湖组源岩联合供烃。孔雀亭气田油气成藏及富集主要受断层封堵性、砂体厚度和储层物性及流体充注历史的联合控制,断层封堵性控制了油气藏的含油气性,砂体厚度和储层物性制约了油气层厚度和含油气饱和度,流体充注历史决定了油气藏的现今赋存相态。  相似文献   

4.
东海陆架盆地丽水凹陷主力烃源岩为古新统月桂峰组湖相泥岩,已发现油气以天然气为主,含少量凝析油,与以原油为主的中国东部典型断陷湖盆存在差异。对月桂峰组湖相泥岩进行了综合评价,发现其存在不能生烃的死碳,烃源岩的热演化成熟度与烃源岩形成石油的转化参数之间存在差异。月桂峰组有机质主要来源于陆源有机质,湖相水生生物来源的比例变化较大。烃源岩地球化学特征与典型湖相烃源岩存在差异。总结了湖盆类型对烃源岩的控制因素以及不同湖盆类型烃源岩形成油气的主要特征,并与月桂峰组湖相泥岩及已发现油气特征进行了对比,表明月桂峰组沉积期发育过补偿和平衡补偿湖盆。月桂峰组泥岩为非典型湖相烃源岩。  相似文献   

5.
构造生烃     
生烃是岩石中所含的有机质产生流体有机化合物的化学反应。岩石有机质化学反应存在两种系统:封闭系统和开放系统,随着埋深加大,烃源岩越来越致密,岩石的化学反应逐渐由开放系统转变为封闭系统。目前的生烃理论仅仅是开放系统下烃源岩成熟与生烃理论,烃源岩成熟与生烃是不匹配的。封闭系统下烃源岩成熟与生烃是不匹配的,烃源岩成熟但不生烃,而是形成另外一种成熟的固体有机质。大多数情况是烃源岩为半封闭系统,烃源岩处于欠生烃状态。构造运动形成的断层和裂隙将烃源岩与疏导层沟通,烃源岩迅速由封闭、半封闭系统转变为开放系统。这种生烃系统的转变形成短时间内过量生烃,笔者将这种生烃作用命名为构造生烃,意味着构造运动期即为主生烃期,伴随着多次构造运动可以形成多个幕式生烃高峰。构造生烃理论开拓两个极其重要的勘探领域:第一,新构造勘探。以往认为已经过了生、排烃期的构造得以解放,如渤海湾郯庐断裂带第四纪圈闭不是过了主生烃期,而是正处于构造生烃的过生烃高峰期。以PL19-3为代表的油气运聚强度只有构造生烃能够解释;第二,超深勘探,特别是天然气勘探。深层勘探的下限将大大延伸,生烃门限,特别是生气门限将大大加深,仅生烃而言万米都不是天然气勘探的极限。  相似文献   

6.
北部湾盆地涠西南凹陷C洼烃源岩热史及成熟史模拟   总被引:2,自引:0,他引:2  
北部湾盆地涠西南凹陷C洼流沙港组烃源岩热史及成熟史研究,对C洼深水油气勘探具有指导意义。在恢复涠西南凹陷C洼地史和热史的基础上,利用EASY%Ro模型计算了流沙港组烃源岩的成熟度史。研究结果表明,在涠西南凹陷发展的裂陷阶段初始期热流值较高,最大值约为77mW/m2,其后热流值逐渐减小,现今热流值约为54mW/m2;涠西南凹陷C洼流沙港组烃源岩开始生烃(Ro=0.5%)时间为51MaBP,达到生烃高峰(Ro=1%)时间为42MaBP,达到高成熟演化阶段(Ro=1.3%)时间为17MaBP;对比涠1井流沙港组烃源岩演化特征,处于C洼深水勘探区的流沙港组烃源岩成熟度较高,生烃能力较强,拥有广阔的油气勘探前景。  相似文献   

7.
近年来,中石油和中石化在四川盆地雷口坡组雷四3亚段的勘探陆续取得重要进展,展示了良好的勘探前景。笔者结合新钻探井和最新研究成果,从地层、沉积相、烃源岩、储层和成藏等多方面采用烃源对比、埋藏史及烃源岩热演化史、包裹体测温等方法对四川盆地雷四3亚段的含油气地质条件进行了进一步分析,总结了其油气成藏特征,提出了有利勘探区带,以期有助于拓展四川盆地雷口坡组的勘探领域。研究结果表明:雷四3亚段天然气以雷口坡组和须家河组烃源岩混合来源气为主;储集空间以粒间溶孔、晶间溶孔为主,属低孔低渗储层;雷四3亚段气藏为2期成藏,烃源岩于中、晚侏罗世进入生烃高峰;雷四3亚段具有构造和构造-岩性地层2种气藏类型,龙门山山前断褶带为构造气藏的有利勘探区,新津-邛崃斜坡带与梓潼-盐亭斜坡带是构造-岩性地层气藏的有利勘探区。  相似文献   

8.
在对构造演化、成藏要素、油源对比、成藏期次分析的基础上,结合Trinity油气运移成藏模拟分析软件对锦州25—1油田的油气运聚模拟研究,分析了形成锦州25—1油田的成藏主控因素,建立了其成藏模式,指出了该地区有利勘探方向。模拟分析结果表明,锦州25—1构造是辽西凹陷沙三段烃源岩生成油气运聚的有利指向区,而优良成藏要素的优势时空配置则是形成锦州25—1油田的关键因素。其成藏模式为:辽西凹陷沙三段烃源岩在东下段时期进入了大量生排烃期,生成的油气为一期充注,充注时间发生在东营组末期,沿东下段时期强烈构造运动伴生的断裂系统、沙二段广泛发育的砂体、沙二段与沙三段之间大型不整合面以及古构造脊所构成的疏导体系运移至沙二段圈闭成藏,而沙三段砂体则可以近源优势成藏。辽西凹陷西斜坡、凹中隆以及古构造脊是今后较为有利的勘探区域。  相似文献   

9.
为了综合确定平北地区的主力烃源岩,深化其油气成藏动力学过程研究,在烃源岩分布特征及有机质丰度、类型和成熟度分析的基础上,应用舍油气盆地数值模拟技术,定量恢复了研究区主要烃源岩层系的生排烃历史。研究表明,平北地区主要发育始新统平湖组、渐新统花港组两套烃源岩系,其中平湖组暗色泥岩为主力烃源岩,具较高的有机质丰度、成熟度、生排烃强度与排烃效率;以平湖组为源岩的油气系统应是本区油气勘探的主要目标。  相似文献   

10.
随着东海盆地H地区油气勘探的发现,花港组烃源岩的勘探潜力也日益受到重视。通过烃源岩岩石热解分析、稳定碳同位素分析、镜质体反射率测定以及干酪根组分分析,对烃源岩特征进行研究。结果表明:氯仿沥青"A"组分中饱和烃和芳烃组分的碳同位素组成特征和碳同位素CV值显示研究区花港组泥岩烃源岩存在海陆相有机质;花港组烃源岩镜质体反射率Ro值为0.76%~1.11%,热解最高峰温主体介于440~465℃,已进入烃源岩热演化成熟阶段;泥岩烃源岩干酪根类型指数主体0,热解氢指数150 mg/g,花港组烃源岩发育Ⅲ型干酪根;泥岩烃源岩有机碳TOC主体0.5%,热解生烃潜量S_1+S_2主体1 mg/g,氯仿沥青"A"主体0.05%,为差泥岩烃源岩。研究区花港组烃源岩煤岩样品热解生烃潜量S_1+S_2主体100 mg/g,氯仿沥青"A"主体1.5%,氢指数HI主体275 mg/g,主体为好煤岩烃源岩。总之,研究区煤岩烃源岩品质优于泥岩烃源岩,泥岩烃源岩发育海陆相有机质,且陆相有机质丰度优于海相有机质。  相似文献   

11.
The petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin was investigated using an integrated fluid inclusion analysis workflow and geohistory modelling. One and two-dimensional basin modelling was performed to unravel the oil generation history of the Eocene Shahejie Formation (Es3 and Es4) source rocks based on the reconstruction of the burial, thermal and maturity history. Calibration of the model with thermal maturity and borehole temperature data using a rift basin heat flow model indicates that the upper interval of the Es4 source rocks began to generate oil at around 35 Ma, reached a maturity level of 0.7% Ro at 31–30 Ma and a peak hydrocarbon generation at 24–23 Ma. The lower interval of the Es3 source rocks began to generate oil at around 33–32 Ma and reached a maturity of 0.7% Ro at about 27–26 Ma. Oil generation from the lower Es3 and upper Es4 source rocks occurred in three phases with the first phase from approximately 30–20 Ma; the second phase from approximately 20–5 Ma; and the third phase from 5 Ma to the present day. The first and third phases were the two predominant phases of intense oil generation.Samples from the Es3 and Es4 reservoir intervals in 12 wells at depth intervals between 2677.7 m and 4323.0 m were investigated using an integrated fluid inclusion workflow including petrography, fluorescence spectroscopy and microthermometry to determine the petroleum charge history in the northern Dongying Depression. Abundant oil inclusions with a range of fluorescence colours from near yellow to near blue were observed and were interpreted to represent two episodes of hydrocarbon charge based on the fluid inclusion petrography, fluorescence spectroscopy and microthermometry data. Two episodes of oil charge were determined at 24–20 Ma and 4–3 Ma, respectively with the second episode being the predominant period for the oil accumulation in the northern Dongying Depression. The oil charge occurred during or immediately after the modelled intense oil generation and coincided with a regional uplift and a rapid subsidence, suggesting that the hydrocarbon migration from the already overpressured source rocks may have been triggered by the regional uplift and rapid subsidence. The expelled oil was then charged to the already established traps in the northern Dongying Depression. The proximal locations of the reservoirs to the generative kitchens and the short oil migration distance facilitate the intimate relationship between oil generation, migration and accumulation.  相似文献   

12.
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.  相似文献   

13.
The northwestern part of the Persian Gulf is one of the most prominent hydrocarbon exploration and production areas. Oilfields are located in structural highs formed around the Cenomanian depression known as Binak Trough. To evaluate the highly variable source rock maturity, timing of hydrocarbon generation as well as migration pattern and the remaining hydrocarbon potential of the early Cretaceous source rocks, burial and thermal histories were constructed for four production wells and one pseudo well. In addition two cross sections covering the depression and the structural highs around the trough were investigated by 2D basin modeling to provide a better regional overview on basin evolution.The modeling results indicate that whereas the Cretaceous source rocks are immature or early mature at the location of oilfields, they reached sufficient maturity to generate and expel considerable amounts of hydrocarbons in the Binak depression. The main phase of oil generation and expulsion from the Cretaceous source rocks is relatively recent and thus highly favorable for the conservation of hydrocarbon accumulations. Trap charging occurred through the late Miocene to Pliocene after the Zagros folding. 2D models predict that the Albian source rock still has significant hydrocarbon generation potential whereas the lower Neocomian source rock has reached already a high transformation ratio within the deep kitchen area. Oil migration occurs in both lateral and vertical directions. This migration pattern could explain the distribution of identified oil families in the northwestern part of the Persian Gulf.  相似文献   

14.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

15.
The prolific, oil-bearing basins of eastern Venezuela developed through an unusual confluence of Atlantic, Caribbean and Pacific plate tectonic events. Mesozoic rifting and passive margin development created ideal conditions for the deposition of world-class hydrocarbon source rocks. In the Cenozoic, transpressive, west-to-east movement of the Caribbean plate along the northern margin of Venezuela led to the maturation of those source rocks in several extended pulses, directly attributable to regional tectonic events. The combination of these elements with well-developed structural and stratigraphic fairways resulted in remarkably efficient migration of large volumes of oil and gas, which accumulated along the flanks of thick sedimentary depocenters.At least four proven and potential hydrocarbon source rocks contribute to oil and gas accumulations. Cretaceous oil-prone, marine source rocks, and Miocene oil- and gas-prone, paralic source rocks are well documented. We used reservoired oils, seeps, organic-rich rocks, and fluid inclusions to identify probable Jurassic hypersaline-lacustrine, and Albian carbonate source rocks. Hydrocarbon maturation began during the Early Miocene in the present-day Serrania del Interior, as the Caribbean plate moved eastward relative to South America. Large volumes of hydrocarbons expelled during this period were lost due to lack of effective traps and seals. By the Middle Miocene, however, when source rocks from the more recent foredeeps began to mature, reservoir, migration pathways, and topseal were in place. Rapid, tectonically driven burial created the opportunity for unusually efficient migration and trapping of these later-expelled hydrocarbons. The generally eastward migration of broad depocenters across Venezuela was supplemented by local, tectonically induced subsidence. These subsidence patterns and later migration resulted in the mixing of hydrocarbons from different source rocks, and in a complex map pattern of variable oil quality that was further modified by biodegradation, late gas migration, water washing, and subsequent burial.The integration of plate tectonic reconstructions with the history of source rock deposition and maturation provides significant insights into the genesis, evolution, alteration, and demise of Eastern Venezuela hydrocarbon systems. We used this analysis to identify additional play potential associated with probable Jurassic and Albian hydrocarbon source rocks, often overlooked in discussions of Venezuela. The results suggest that oils associated with likely Jurassic source rocks originated in restricted, rift-controlled depressions lying at high angles to the eventual margins of the South Atlantic, and that Albian oils are likely related to carbonate deposition along these margins, post-continental break up. In terms of tectonic history, the inferred Mesozoic rift system is the eastern continuation of the Espino Graben, whose remnant structures underlie both the Serrania del Interior and the Gulf of Paria, where thick evaporite sections have been penetrated. The pattern of basin structure and associated Mesozoic deposition as depicted in the model has important implications for the Mesozoic paleogeography of northern South America and Africa, Cuba and the Yucatan and associated new play potential.  相似文献   

16.
We describe (1) bedding-parallel veins of fibrous calcite (beef) and (2) thrust detachments, which we believe provide good evidence for fluid overpressure in source rocks for petroleum. Our examples are from the surface or subsurface of the Magallanes-Austral Basin, which lies at the southern tip of South America. There, the best source rocks for petroleum are of Early Cretaceous age. In the central parts of the basin these source rocks have become overmature, but at the eastern edge, onshore and offshore, they are today either immature or in the oil window.In Tierra del Fuego, the foothills of the Andes consist mainly of sedimentary rocks, which have undergone thin-skinned thrusting. In the Vicuña area (Chile), Early Cretaceous source rocks have reached the surface above thrust detachments, which are visible on seismic data and well data. At the surface, we have found calcite beef, containing hydrocarbons (solid and/or fluid), in the Rio Jackson and Vicuña formations, which have reached the wet gas window. In the Rio Gallegos area (Argentina), the source rocks have not reached the surface, but seismic and well data provide good evidence for thin-skinned thrusting above flat-lying detachments in Early Cretaceous source rock, where it is in the early oil window. In contrast, there is little or no deformation where the source rock is still immature. Thus the deformation front coincides with the maturity front. Next to the central parts of the basin, where the source rocks have reached the surface within the Andes proper, they have undergone low-grade metamorphism. Within these source rocks, we have found beef veins, but of quartz, not calcite. To the east, within the foreland basin, seismic and well data provide evidence for a few compressional structures, including thin-skinned detachments in the deeply buried source rock. Finally, in the northern part of the basin (Santa Cruz province, Argentina), where it is shallower, the source rocks have reached the surface in the foothills, above a series of back-thrusts. At Lago San Martín, the source rocks have reached the oil window and they again contain calcite beef.In conclusion, where we have examined Early Cretaceous source rocks at the surface, they contain either calcite beef (if they have reached the late oil window or wet gas window) or quartz beef (if they are overmature). Independent evidence for overpressure, in the form of source-rock detachments, comes from subsurface data, especially at the southern end of the basin, where the source rocks are not overmature and deformation is relatively intense. Thus we argue that hydrocarbon generation has led to overpressure, as a result of chemical compaction and load transfer, or volume changes, or both.  相似文献   

17.
The Erlian Basin is located in the Central Asia-Mongolian fold belt between the Siberian and Sino-Korean Cratons. It is a Mesozoic continental rift basin composed of 52 individual fault-depressions. The main phase of rifting took place during the Early Cretaceous when a series of fluvial-lacustrine sediments were deposited. Each depression forms an independent sedimentary system and behaves as an independent petroleum system. Hydrocarbon source rocks are found in the upper Arshan and lower Tengger Formations. These are mainly type II source rocks and are mainly located in oil generation window at the present day. A series of oilfields and commercial oil flows have been found in the basin, highlighting its good petroleum potential. Many of these oils are heavy.Six oil samples from the Anan and ten from the Jirgalangtu Depressions have been subjected to routine geochemical analytical techniques in order to evaluate the origins. The methods used include gas chromatography of the saturated and aromatic hydrocarbon fractions, gas-chromatography-mass-spectrometry of the saturated hydrocarbon fraction and stable carbon isotope analyses. The trace metal elements of the biodegraded oils from the Jirgalangtu Depression were also analysed by atomic absorption spectroscopy.Two types of heavy oils : primary and biodegraded were identified on the basis of these data. The former includes both immature and mature heavy oils. A filtering-and-spill process was proposed to explain the origin of primary mature heavy oils (or tar-mat) in the Anan Depression. The biodegraded oils from the Jirgalangtu Depression were ranked and classified in terms of the degree of biodegradation, using a series of geochemical parameters based on the gas chromatographic concentrations and biomarker fingerprints of gas-chromatography-mass-spectrometry of the saturated hydrocarbon fraction. The relationship between oil saturation and porosity indicates that the heavy oils in the Jirgalangtu Depression were biodegraded after they accumulated.  相似文献   

18.
High sedimentation rates (as much as 2500 m/Ma) during Pliocene-Pleistocene, with a resultant undercompacted section as thick as 10,000 m, and lower than normal geothermal gradients are the main characteristics which have created all the means for generation and preservation of oil at deep layers in the Lower Kura Depression.Oils collected from eight different oil fields for analyses seem to have originated from a common source rock which probably is clastic, deposited in relatively subanoxic to suboxic transitional marine environment receiving low to moderate input of terrestrial organic matter.Oils from shallow (< 3000 m) and cold (< 70–80°C) reservoirs have been altered to various extent by bacterial activity.A computer-aided basin modeling study has been carried out to outline the spatial variation of the oil window and thus help in further identification of possible source rocks for the reservoired oil in the Lower Kura Depression. Results suggest that the potential hydrocarbon source horizons of the Miocene and Pliocene Red Bed Series of the so called Productive Succession are, even at depocenter areas, immature with respect to oil generation, and thus, are very unlikely to have been source rocks for the reservoired oils. However, the Oligocene-Lower Miocene Maykop rocks are marginally mature to mature depending on locality and the Eocene and older rocks are mature with respect to oil generation at all representative field locations. Oil generation commenced at the end of Pliocene and continues at present at depths between 6000 and 12,000 m.An unusually deep (> 10,000 m) oil window in the depocenter areas has been caused by the depressed isotherms due to extremely high sedimentation rates (up to 3000 m/Ma) for the last two million years. The main phase of oil generation is taking place at depths greater than what most of the wells in the study are have reached.  相似文献   

19.
There has been a revival in hydrocarbon source rock characterization and development associated with growing interest in unconventional resources, where these fine-grained organic-rich rocks act as both source and reservoir. To-date, the exploration focus on shale reservoirs has been largely on marine systems. Lacustrine source rocks for conventional resources are geographically important, dominating regions such as China, Indonesia, and Brazil's resource-base. However, they have been generally untested for unconventional resources.There are a number of key differences in the nature of these hydrocarbon systems that should be considered when assessing whether lacustrine systems may represent future unconventional opportunities in areas where the conventional resource-base is dominated by lacustrine-sourced oil. Among the key differences between these depositional systems is the greater sensitivity to high frequency climatic variability within lacustrine systems. Lacustrine systems are highly sensitive to changes in the balance between precipitation and evaporation, which may lead to rapid changes in lake level, potentially exceeding 600 m. These changes in depositional conditions are geologically rapid and may occur over periods of thousands of years. Such changes can reduce the areal extent of potentially thick source rock intervals to only those portions of a basin where a permanent deep lake was present. Thus the core unconventional target area may be geographically limited compared with their marine counterpart. Although potentially areally limited, a review of many lacustrine source rocks suggests that their thicknesses are often significantly greater than marine source rocks. An examination of the more distal portions of lacustrine systems, where better source rock potential is present reveals that there is generally limited connectivity between source and conventional reservoir. In these settings, such as the Wind River basin (Waltman Shale), the hydrocarbons remain trapped within the shales, potentially leading to over-pressured hydrocarbon charged systems. Such conditions suggest that although areally limited, viable unconventional targets may exist, if suitable reservoir conditions are present. Finally, the character of the oils produced is different in these settings, with lacustrine oils being waxy and displaying different hydrocarbon generation and cracking kinetics. High wax oils display distinct flow characteristics, being more viscous, and may offer different production challenges than their non-waxy marine equivalents. Additionally, differences in their cracking kinetics may indicate that the timing of gas generation for shale gas plays may differ significantly from marine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号