首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

2.
In the Sikkim region of north‐east India, the Main Central Thrust (MCT) juxtaposes high‐grade gneisses of the Greater Himalayan Crystallines over lower‐grade slates, phyllites and schists of the Lesser Himalaya Formation. Inverted metamorphism characterizes rocks that immediately underlie the thrust, and the large‐scale South Tibet Detachment System (STDS) bounds the northern side of the Greater Himalayan Crystallines. In situ Th–Pb monazite ages indicate that the MCT shear zone in the Sikkim region was active at c. 22, 14–15 and 12–10 Ma, whereas zircon and monazite ages from a slightly deformed horizon of a High Himalayan leucogranite within the STDS suggest normal slip activity at c. 17 and 14–15 Ma. Although average monazite ages decrease towards structurally lower levels of the MCT shear zone, individual results do not follow a progressive younging pattern. Lesser Himalaya sample KBP1062A records monazite crystallization from 11.5 ± 0.2 to 12.2 ± 0.1 Ma and peak conditions of 610 ± 25 °C and 7.5 ± 0.5 kbar, whereas, in the MCT shear zone rock CHG14103, monazite crystallized from 13.8 ± 0.5 to 11.9 ± 0.3 Ma at lower grade conditions of 525 ± 25 °C and 6 ± 1 kbar. The P–T–t results indicate that the shear zone experienced a complicated slip history, and have implications for the understanding of mid‐crustal extrusion and the role of out‐of‐sequence thrusts in convergent plate tectonic settings.  相似文献   

3.
The recent identification of multiple strike‐parallel discontinuities within the exhumed Himalayan metamorphic core has helped revise the understanding of convergence accommodation processes within the former mid‐crust exposed in the Himalaya. Whilst the significance of these discontinuities to the overall development of the mountain belt is still being investigated, their identification and characterization has become important for potential correlations across regions, and for constraining the kinematic framework of the mid‐crust. The result of new phase equilibria modelling, trace element analysis and high‐precision Lu–Hf garnet dating of the metapelites from the Likhu Khola region in east central Nepal, combined with the previously published monazite petrochronology data confirms the presence of one of such cryptic thrust‐sense tectonometamorphic discontinuities within the lower portion of the exhumed metamorphic core and provides new constraints on the P–T estimates for that region. The location of the discontinuity is marked by an abrupt change in the nature of P–T–t paths of the rocks across it. The rocks in the footwall are characterized by a prograde burial P–T path with peak metamorphic conditions of ~660°C and ~9.5 kbar likely in the mid‐to‐late Miocene, which are overlain by the hanging wall rocks, that preserve retrograde P–T paths with P–T conditions of >700°C and ~7 kbar in the early Miocene. The occurrence of this thrust‐sense structure that separates rock units with unique metamorphic histories is compatible with orogenic models that identify a spatial and temporal transition from early midcrustal deformation and metamorphism in the deeper hinterland to later deformation and metamorphism towards the shallower foreland of the orogen. Moreover, these observations are comparable with those made across other discontinuities at similar structural levels along the Himalaya, confirming their importance as important orogen‐scale structures.  相似文献   

4.
The Ramgarh–Munsiari thrust is a major orogen-scale fault that extends for more than 1,500 km along strike in the Himalayan fold-thrust belt. The fault can be traced along the Himalayan arc from Himachal Pradesh, India, in the west to eastern Bhutan. The fault is located within the Lesser Himalayan tectonostratigraphic zone, and it translated Paleoproterozoic Lesser Himalayan rocks more than 100 km toward the foreland. The Ramgarh–Munsiari thrust is always located in the proximal footwall of the Main Central thrust. Northern exposures (toward the hinterland) of the thrust sheet occur in the footwall of the Main Central thrust at the base of the high Himalaya, and southern exposures (toward the foreland) occur between the Main Boundary thrust and Greater Himalayan klippen. Although the metamorphic grade of rocks within the Ramgarh–Munsiari thrust sheet is not significantly different from that of Greater Himalayan rock in the hanging wall of the overlying Main Central thrust sheet, the tectonostratigraphic origin of the two different thrust sheets is markedly different. The Ramgarh–Munsiari thrust became active in early Miocene time and acted as the roof thrust for a duplex system within Lesser Himalayan rocks. The process of slip transfer from the Main Central thrust to the Ramgarh–Munsiari thrust in early Miocene time and subsequent development of the Lesser Himalayan duplex may have played a role in triggering normal faulting along the South Tibetan Detachment system.  相似文献   

5.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

6.
In the Greater Himalayan sequence of far northwestern Nepal, detailed mapping, thermobarometry, and microstructure analysis are used to test competing models of the construction of Himalayan inverted metamorphism. The inverted Greater Himalayan sequence, which is characterized by an increase in peak metamorphic temperatures up structural section from 580 to 720 °C, is divided into two tectonometamorphic domains. The lower domain contains garnet‐ to kyanite‐zone rocks whose peak metamorphic assemblages suggest a metamorphic field pressure gradient that increases up structural section from 8 to 11 kbar, and which developed during top‐to‐the‐south directed shearing. The upper portion of the Greater Himalayan sequence is composed of kyanite‐ and sillimanite‐zone migmatitic gneisses that contain a metamorphic pressure gradient that decreases up structural section from 10 to 5 kbar. The lower and upper portions of the Greater Himalayan sequence are separated by a metamorphic discontinuity that spatially coincides with the base of the lowest migmatite unit. Temperatures inferred from quartz recrystallization mechanisms and the opening angles of quartz c‐axis fabrics increase up section through the Greater Himalayan sequence from ~530 to >700 °C and yield similar results to peak metamorphic temperatures determined by thermometry. The observations from the Greater Himalayan sequence in far northwestern Nepal are consistent with numerical predictions of channel‐flow tectonic models, whereby the upper hinterland part evolved as a ductile southward tunnelling mid‐crustal channel and the lower foreland part ductily accreted in a critical‐taper system at the leading edge of the extruding channel. The boundary between the upper and lower portions of the Greater Himalayan sequence is shown to represent a foreland–hinterland transition zone that is used to reconcile the different proposed tectonic styles documented in western Nepal.  相似文献   

7.
Thermal model for the Zanskar Himalaya   总被引:8,自引:0,他引:8  
ABSTRACT Crustal thickening along the northern margin of the Indian plate, following the 50 Ma collision along the Indus Suture Zone in Ladakh, caused widespread high-temperature, medium-pressure Barrovian facies series metamorphism and anatexis. In the Zanskar Himalaya metamorphic isograds are inverted and structurally telescoped along the Main Central Thrust (MCT) Zone at the base of the High Himalayan slab. Along the Zanskar valley at the top of the slab, isograds are the right way-up and are also telescoped along northeast-dipping normal faults of the Zanskar Shear Zone (ZSZ), which are related to culmination collapse behind the Miocene Himalayan thrust front. Between the MCT and the ZSZ a metamorphic-anatectic core within sillimanite grade rocks contains abundant leucogranite-granite crustal melts of probable Himalayan age. A thermal model based on a crustal-scale cross-section across the Zanskar Himalaya suggests that M1 isograds, developed during early Himalayan Barrovian metamorphism, were overprinted during high-grade MCT-related anatexis and folded around a large-scale recumbent fold developed in the hanging wall of the MCT.  相似文献   

8.
The High Himalayan Crystalline Sequence in north-central Nepal is a 15-km-thick pile of metasediments that is bound by the Main Central Thrust to the south and a normal fault to the north. The Langtang section through the metasediments shows an apparent inversion of metamorphic isograds with high-P, kyanite-grade rocks exposed beneath low-P, sillimanite-grade rocks. Textural evidence confirms that the observed inversion is a result of a polyphase metamorphic history and phase equilibria studies indicate that thermal decoupling has occurred within a mechanically coherent section of crust. Rocks now exposed at the base of the High Himalayan thrust sheet underwent Barrovian regional metamorphism (M1) prior to 34 Ma in the early stages of the Himalayan orogeny, recording metamorphic conditions of T= 710 ± 30° C, P= 9 ± 1 kbar. After the activation of the Main Central Thrust, which emplaced these metapelites southwards onto the lower grade Lesser Himalayan formations, the upper part of the thrust sheet was overprinted by a second heating event (M2), resulting in sillimanite-grade metamorphism and anatexis of metapelites at T= 760 ± 30° C, P= 5.8 ± 0.4 kbar between 17 and 20 Ma. Crustally derived, leucogranite magmas have been emplaced into low-grade Tethyan sediments on the hangingwall of the normal fault that bounds the northern limit of the metapelitic sequence. The cause of the selective heating of the upper section of the metasediments during M2 cannot be reconciled with either post-thrusting thermal relaxation or advection models. The cause of M2 remains problematical but it is suggested that heat focusing has occurred at the top of the High Himalayan Crystalline Sequence as a result of movement on the normal fault blanketing metapelites of high heat productivity with low-grade sediments of low thermal conductivity. This model implies that the normal fault was active before M2, consistent with decompression textures that formed during, or shortly after, sillimanite-grade metamorphism.  相似文献   

9.
The Dadeldhura thrust sheet inm western Nepal consists of Proterozoic–Lower Paleozoic sedimentary and plutonic rocks, and their metamorphic equivalents, that rest structurally on Proterozoic strata of the Lesser Himalayan sequence. Although regional metamorphism and ductile deformation were widespread during Tertiary thrust emplacement, relicts of early Paleozoic tectonism are preserved locally. New field and geochronologic studies, together with the findings of previous workers, indicate that this early Paleozoic tectonism included: (1) regional metamorphism to at least garnet grade, (2) regional folding of a thick metamorphic sequence into a broad east–west trending syncline, (3) outcrop-scale folding of metasedimentary rocks, (4) emplacement of Cambro–Ordovician granitic bodies during and after the metamorphism and deformation, (5) uplift and erosion of the metamorphic sequence, with garnet-grade rocks locally exposed at the surface, and (6) derivation of Ordovician conglomeratic sandstones from the early Paleozoic orogen. Similar records of metamorphism, deformation, and uplift/erosion have been found in other regions of the Himalaya, indicating that rocks of the Dadeldhura thrust sheet were originally involved in a regionally extensive orogenic system. Future tectonic models of Himalayan orogenesis must accommodate this early Paleozoic event.  相似文献   

10.
The Dadeldhura thrust sheet inm western Nepal consists of Proterozoic–Lower Paleozoic sedimentary and plutonic rocks, and their metamorphic equivalents, that rest structurally on Proterozoic strata of the Lesser Himalayan sequence. Although regional metamorphism and ductile deformation were widespread during Tertiary thrust emplacement, relicts of early Paleozoic tectonism are preserved locally. New field and geochronologic studies, together with the findings of previous workers, indicate that this early Paleozoic tectonism included: (1) regional metamorphism to at least garnet grade, (2) regional folding of a thick metamorphic sequence into a broad east–west trending syncline, (3) outcrop-scale folding of metasedimentary rocks, (4) emplacement of Cambro–Ordovician granitic bodies during and after the metamorphism and deformation, (5) uplift and erosion of the metamorphic sequence, with garnet-grade rocks locally exposed at the surface, and (6) derivation of Ordovician conglomeratic sandstones from the early Paleozoic orogen. Similar records of metamorphism, deformation, and uplift/erosion have been found in other regions of the Himalaya, indicating that rocks of the Dadeldhura thrust sheet were originally involved in a regionally extensive orogenic system. Future tectonic models of Himalayan orogenesis must accommodate this early Paleozoic event.  相似文献   

11.
《Geodinamica Acta》2000,13(2-3):119-132
The North Caribbean margin is an example of an oblique convergence zone where the currently exposed HP–LT rocks are systematically localised close to strike-slip faults. The petrological and structural study of eclogite and blueschist facies rocks of the peninsula of Samaná (Hispaniola, Dominican Republic) confirms the presence of two different metamorphic units. The former diplays low metamorphic grade (Santa Barbara unit), characterized by the assemblage albite - lawsonite (7.5 ± 2 kbar and 320 ± 80 °C). The latter (Punta Balandra unit), thrust over the first unit towards the NW, and is characterized by the occurrence of blueschist and eclogite facies assemblages (13 ± 2 kbar and 450 ± 70 °C), within oceanic metasediments. The isothermal retrograde evolution occurred in epidote-blueschist facies conditions (9 ± 2 kbar and 440 ± 60 °C). The late greenschist facies evolution is contemporaneous with conjugate NW–SE extension and E–W strike-slip faulting. This late extension is for regional dome and basin structures. According to their lithotectonic, structural and metamorphic characteristics, the metamorphic nappe stack of Samaná may be interpreted as a fragment of an accretionary wedge thrust onto the North American continental shelf. Evolution of the wedge was associated with the active subduction of the North American plate, under the Greater Antilles arc, at the level of the Puerto Rico trench. During active Late Cretaceous convergence, the HP rocks were initially exhumed, within the accretionary prism, by thrusting parallel to the NE–SW direction of convergence. Subsequently, during the Eocene collision between the Caribbean plate and the North American margin, the installation of a transtensive regime of E–W direction supports the local development of conjugate extension of NW–SE direction that facilitated the final phase of exhumation of the HP rocks.  相似文献   

12.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

13.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

14.
西藏南部聂拉木—樟木剖面出露的高喜马拉雅变质带主要由副变质片麻岩和花岗质片麻岩组成,其次为伟晶岩和淡色花岗侵入体,区域变质程度为角闪岩相。我们对其中的变质基性捕虏体进行详细的变质作用研究,内容包括变质矿物组合,矿物变质反应结构和变质作用的温度—压力条件分析。基性捕虏体中的石榴子石角闪片麻岩和斜长角闪片麻岩均保存了两期变质矿物组合。温度与压力计算结果表明,石榴子石角闪片麻岩早期变质阶段(M1)温度约为829 ℃,压力为7.3 kbar; 晚期(M2)变质温度为625 ℃,压力为4.3 kbar。斜长角闪片麻岩所经历的早期变质阶段(M1)温度约为776 ℃、压力约为10.6 kbar; 晚期(M2)变质温度超过692 ℃,压力为7.4 kbar。石榴子石角闪片麻岩和斜长角闪片麻岩捕虏体均记录了典型的顺时针P-T轨迹,表明高喜马拉雅变质带曾向北俯冲到下地壳深度,之后被抬升到地表剥蚀出露。变质基性捕虏体的研究说明高喜马拉雅结晶岩系经历过较高温度—压力的变质作用,支持了其沿着藏南拆离系和主中央逆冲断裂系向南挤出的大地构造模型。  相似文献   

15.
The metamorphism in the Central Himalaya   总被引:10,自引:0,他引:10  
ABSTRACT All along the Himalayan chain an axis of crystalline rocks has been preserved, made of the Higher Himalaya crystalline and the crystalline nappes of the Lesser Himalaya. The salient points of the metamorphism, as deduced from data collected in central Himalaya (central Nepal and Kumaun), are:
  • 1 The Higher Himalaya crystalline, also called the Tibetan Slab, displays a polymetamorphic history with a first stage of Barrovian type overprinted by a lower pressure and/or higher temperature type metamorphism. The metamorphism is due to quick and quasi-adiabatic uplift of the Tibetan Slab by transport along an MCT ramp, accompanied by thermal refraction effects in the contact zone between the gneisses and their sedimentary cover. The resulting metamorphic pattern is an apparent (diachronic) inverse zonation, with the sillimanite zone above the kyanite zone.
  • 2 Conversely, the famous inverted zonation of the Lesser Himalaya is basically a primary pattern, acquired during a one-stage prograde metamorphism. Its origin must be related to the thrusting along the MCT, with heat supplied from the overlying hot Tibetan Slab, as shown by synmetamorphic microstructures and the close geometrical relationships between the metamorphic isograds and the thrust.
  • 3 Thermal equilibrium is reached between units above and below the MCT. Far behind the thrust tip there is good agreement between the maximum temperature attained in the hanging wall and the temperature of the Tibetan Slab during the second metamorphic stage; but closer to the MCT front, the thermal accordance between both sides of the thrust is due to a retrogressive metamorphic episode in the basal part of the Tibetan Slab.
  相似文献   

16.
A balanced cross-section along the Budhi-Gandaki River in central Nepal between the Main Central thrust, including displacement on that fault, and the Main Frontal thrust reveals a minimum total shortening of 400 km. Minimum displacement on major orogen-scale structures include 116 km on the Main Central thrust, 110 km on the Ramgarh thrust, 95 km on the Trishuli thrust, and 56 km in the Lesser Himalayan duplex. The balanced cross-section was also incrementally forward modeled assuming a generally forward-breaking sequence of thrusting, where early faults and hanging-wall structures are passively carried from the hinterland toward the foreland. The approximate correspondence of the forward modeled result to observe present day geometries suggest that the section interpretation is viable and admissible. In the balanced cross-section, the Trishuli thrust is the roof thrust for the Lesser Himalayan duplex. The forward model and reconstruction emphasize that the Lesser Himalayan duplex grew by incorporating rock from the footwall and transferring it to the hanging wall along the Main Himalayan thrust. As the duplex developed, the Lesser Himalayan ramp migrated southward. The movement of Lesser Himalayan thrust sheets over the ramp pushed the Lesser Himalayan rock and the overburdens of the Greater and Tibetan Himalayan rock toward the erosional surface. This vertical structural movement caused by footwall collapse and duplexing, in combination with erosion, exhumed the Lesser Himalaya.  相似文献   

17.
滇西无量山地区的构造变形和变质作用   总被引:1,自引:0,他引:1  
无量山构造带位于滇西兰坪-思茅盆地中段西侧北北西-南南东走向的复背斜。在复背斜中部发育北北西-南南东向的左旋走滑韧性剪切带。中部剪切带变质作用达绿帘角闪岩相的蓝晶石带高于绿片岩相黑云母带的围岩。用共生的黑云母-石榴石温压计计算得到中部剪切变质带西缘变质温度为600 ℃~650 ℃,压力为5.6 kba,东缘温度为550 ℃~600 ℃,压力为5 kba左右。结合同构造期石榴石变斑晶的环带成分和多硅白云母b0值的分析,首次在滇西提出该剪切变质带是进变质的,以不均一的、非连续的变质作用为主要特征,与区域变质作用不同。无量山中部韧性剪切变质带的进变质作用与剪切带中岩石的变形强度有关。岩石变形愈强,变形能就愈大,随之转化成的热量就愈大,该热能参与到岩石变质作用中,提高了岩石的变质程度。这一思路有可能成为研究变形与变质作用的一条有效途径。  相似文献   

18.
In the Himalayan orogen, Greater Himalayan (GH) rocks were buried to mid‐ to lower‐crustal levels and are now exposed across the strike of the orogen. Within the eastern Himalaya, in the Kingdom of Bhutan, the GH is divided into structurally lower (lower‐GH) and upper (upper‐GH) levels by the Kakhtang thrust (KT). Pressure–temperature estimates from lower‐ and upper‐GH rocks collected on two transects across the KT yield similar P–T–structural distance trends across each transect. In the eastern transect, temperatures are similar (from 730 to 650 °C) over a structural thickness of ~11 km, but peak pressures decrease from ~10 to 6 kbar with increasing structural level. In comparison, peak temperatures in the central Bhutan transect are similar (from 730 to 600 °C), but pressures decrease from 10 to 6.5 kbar with increasing structural level over a structural thickness of ~6 km. The structurally highest sample reveals slightly higher pressures of 8.0 kbar in comparison to pressures of ~6.5 kbar for samples collected from within the KT zone, ~4 km below. Within each transect, there are increases in pressure ± temperature within the overall upright P–T gradient that may demarcate intra‐GH shear zone(s). These P–T results combined with evidence that the timing of initial melt crystallization becomes older with increasing structural level suggest that the intra‐GH shear zones emplaced deeper GH rocks via progressive ductile underplating. These shear zones, including the KT, likely aided in the initial emplacement and construction of the GH as a composite tectonic unit during the Late Oligocene to Early Miocene, from c. 27 to 16 Ma.  相似文献   

19.
This study combines microstructural observations with Raman spectroscopy on carbonaceous material (RSCM), phase equilibria modelling and U–Pb dating of titanite to delineate the metamorphic history of a well‐exposed section through the South Tibetan Detachment System (STDS) in the Dzakaa Chu valley of Southern Tibet. In the hanging wall of the STDS, undeformed Tibetan Sedimentary Series rocks consistently record peak metamorphic temperatures of ~340 °C. Temperatures increase down‐section, reaching ~650 °C at the base of the shear zone, defining an apparent metamorphic field gradient of ~310 °C km?1 across the entire structure. U–Th–Pb geochronological data indicate that metamorphism and deformation at high temperatures occurred over a protracted period from at least 20 to 13 Ma. Deformation within this 1‐km‐thick zone of distributed top‐down‐to‐the‐northeast ductile shear included a strong component of vertical shortening and was responsible for significant condensing of palaeo‐isotherms along the upper margin of the Greater Himalayan Series (GHS). We interpret the preservation of such a high metamorphic gradient to be the result of a progressive up‐section migration in the locus of deformation within the zone. This segment of the STDS provides a detailed thermal and kinematic record of the exhumation of footwall GHS rocks from beneath the southern margin of the Tibetan plateau.  相似文献   

20.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号