首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
不同温度及不同加热时间作用后混凝土力学性能试验研究   总被引:3,自引:0,他引:3  
采用液压伺服试验系统对经历不同温度、不同加热时间作用后的混凝土力学性能进行了试验研究,分析了加热温度、加热时间对混凝土的抗压强度、弹性模量和应力—应变关系等力学性能的影响。结果表明:高温后,混凝土的力学性能随温度的升高而劣化,表现为随着受热温度的升高、加热时间的延长,混凝土的抗压强度、弹性模量降低,峰值应变逐渐增大。此外,还探讨了混凝土抗压强度、弹性模量和应力—应变关系随温度和加热时间变化的规律,得到了混凝土抗压强度、弹性模量随温度和加热时间变化的回归公式,比较回归曲线与试验曲线的结果表明,回归曲线能够很好地模拟试验曲线。  相似文献   

2.
建筑用铅芯橡胶隔震支座温度性能研究   总被引:5,自引:0,他引:5  
详细研究了建筑隔震结构中铅芯橡胶隔震支座的温度特性。内容包括三个方面:首先是一定温度条件下进行的温度相关性试验,温度范围由—20℃至40℃;其次进行了高温燃烧并经冷却后的基本性能及界限性能试验;最后研究完成了恒温100℃状态下老化185小时和240小时的长期性能试验。在试验结果的基础上,提出了支座屈服后刚度及屈服荷载的温度修正方程。  相似文献   

3.
高强度螺栓摩擦型连接火灾后抗剪试验研究   总被引:1,自引:0,他引:1  
建筑火灾发生频繁且对钢结构危害严重,但总体而言绝大多数火灾并未造成钢结构的根本性破坏,尽快鉴定其火灾后安全性并进行加固修复,对于减小灾后间接经济损失意义重大。高强度螺栓摩擦型连接是钢结构最常用的连接方式之一,其火灾后受力性能对整个结构灾后承载的安全至关重要。但目前国内外对高强度螺栓连接高温过火冷却后的受力性能研究极少。本文对高强度螺栓摩擦型连接进行了火灾后抗剪试验研究,得到了连接的抗滑移承载力、极限承载力以及荷载—变形曲线,研究了过火温度、冷却方式对连接受力性能的影响。为模拟火灾中的可能情况,试验考虑了自然冷却、泼水冷却两种冷却方式。试验表明,当高强度螺栓连接的过火温度不超过400°C时,连接的抗滑移承载力、极限承载力下降小,可判定连接仍能承受外部设计荷载,不需要对连接进行加固或替换螺栓;当过火温度超过400°C时,连接的抗滑移承载力、极限承载力开始显著下降,需连接更进一步的检测并进行仔细的结构分析,以确定连接能否继续承受外部设计荷载,以及是否需要采取必要的加固与修复措施。  相似文献   

4.
城市热岛效应下浅层土中混凝土的酸腐蚀试验研究   总被引:1,自引:0,他引:1  
卢毅  施斌  刘瑾  顾凯  唐朝生  高磊 《地震学刊》2011,(3):241-246,274
针对城市热岛效应引起城区浅层土地温场升高这一观测结果,采用室内快速模拟试验方法,对城区酸性土壤腐蚀混凝土材料的温度效应开展了试验研究。试验研究了在温度为5℃、20℃和40℃条件下,混凝土试样在酸浓度分别为0%、5%和10%的沙土介质中放置30d、90d后的抗压强度变化规律,并对混凝土试样在腐蚀过程中的腐蚀系数变化规律和微观机理进行了分析;最后,对南京城区热岛效应环境下浅层土中混凝土材料酸腐蚀的强度变化规律进行了分析。试验结果表明,在同一腐蚀浓度下,混凝土试样抗压强度的下降速度随着温度的升高而不断加快,其腐蚀系数也随着温度的升高而不断增大;腐蚀介质的浓度越大,环境温度对混凝土腐蚀系数的影响就越明显;在温度为40℃、硫酸浓度为10%的沙土中放置30 d后,混凝土的腐蚀系数K达到45.21%,约是在5℃条件下腐蚀系数的2倍,相当于环境温度每上升1℃,混凝土腐蚀系数平均增加0.64%。该研究成果对于减轻城市热岛效应对岩土工程的影响具有重要意义。  相似文献   

5.
为了研究混凝土在不同的围压和温度耦合作用下的抗压强度,根据相似分析原理,对混凝土抗压强度σmax的控制参数进行无量纲化,得到相关的相似准数;以C40混凝土为例,进行有限元计算得到相似准数之间的关系。结果表明:抗压强度σmax和残余强度随着围压的增大而增加,且最大偏应力与围压呈线性关系;在围压小于20 MPa时,应力-应变曲线可以分成两段,而在围压大于20 MPa时,应力-应变曲线可以划分成三段,出现明显的屈服;在不同的围压作用下温度对抗压强度的影响明显不同,且最大偏应力与温度近似为线性关系;三个无量纲参数σmax/E、F/Eαθ在三维坐标近似形成了一个平面,说明σmax/EαθF/E基本呈线性变化。  相似文献   

6.
西藏南部蛇绿岩套电导率研究   总被引:1,自引:1,他引:0       下载免费PDF全文
大地电磁(MT)资料显示,青藏高原地壳及地幔中普遍存在着高导层.作为大陆造山带中古洋盆岩石圈残片,蛇绿岩套的电导率测量可为了解古洋盆地区地壳及地幔的电性结构提供极其有用的信息.本研究中,我们在压力为1 GPa或3 GPa下,用交流阻抗谱法测量了采自西藏南部地区的蚀变辉长岩、玄武岩、角闪橄榄岩及方辉橄榄岩四个样品的阻抗谱,并进一步得出样品的电导率,不同样品电导率与温度之间的关系满足Arrhenius关系式.在实验温度范围内,蛇绿岩套电导率的对数logσ位于-6.0~-0.5 S/m之间,且随着温度的增高,不同样品电导率增大约4~5.5个量级.样品在未脱水的情况下,低温段的活化焓变化范围在0.4~0.6 eV之间,高温段的活化焓变化范围为1.7~2.6 eV之间.同时,我们研究了样品中结构水含量及铁含量对实验电导率的影响,验证了样品电导率与铁含量之间呈正比关系.当对样品结构水含量进行归一化后,相同温度下各样品的电导率随铁含量的增加而增大,而对样品铁含量归一化后,相同温度下各样品的电导率随样品中水含量的增加而增大.将实验电导率与藏南地区大地电磁结果进行了对比,发现本研究中各样品高温段实验电导率结果均落在大地电磁结果范围内.  相似文献   

7.
为探讨单一因素(如浓度、温度、酸碱度)对冰封期乌梁素海中营养盐和盐分(总氮、总磷、Na+和Cl-)迁移的影响,对不同条件下各物质水样进行室内单向结冰模拟,分析总结物质在冰层和冰下水层中的分布特征,并用分配系数(K)来表征.结果表明:冰体中物质浓度随水样初始浓度(C0)的增大而增大,随结冰温度的升高而减小;各物质在冰体中的浓度分布表现为顶层中层底层.总氮、总磷的分配系数K随C0的增大呈递减趋势,Na+和Cl-的K值随C0的增大呈递增趋势;对各条件下的K值进行假设检验,结果为:水样中物质初始浓度和结冰温度显著影响其在冰-水体系中的分布;同一温度下,C0较小时,酸碱度显著影响各物质在冰-水体系中的分布,C0较大时,酸碱度显著影响Na+和Cl-在冰-水体系中的分布,但对总氮、总磷浓度分布的影响不显著.可见,在不同环境因素下,各物质在冰-水体系中表现出不同的分布特征,对此进行模拟可为寒区湖泊污染物迁移和生物地球化学循环的研究提供一定的参考.  相似文献   

8.
火灾高温作用下波纹腹板钢梁剪切屈曲系数研究   总被引:1,自引:0,他引:1  
波纹腹板钢梁具有优良的抗剪切性能,在常温条件下,它的剪切屈曲模式通常有3种:局部剪切屈曲、总体剪切屈曲和相关剪切屈曲。根据火灾燃烧不同时刻波纹腹板钢梁的温度变化,考虑火灾高温对结构钢材料性能的影响,研究了波纹腹板钢梁在火灾高温作用下的3种剪切屈服模式,给出了高温下波纹腹板钢梁临界剪切屈曲应力和剪切屈曲系数的计算表达式,分析了其随火灾温度的变化趋势,提出在进行火灾高温作用下的波纹腹板钢梁的力学性能分析时,应首先根据钢梁剪切屈曲系数的变化,准确判断其在火灾燃烧不同阶段所处的受力状态,从而使火灾高温下波纹腹板钢梁的受力分析更加精确合理。  相似文献   

9.
咸贵军  李惠  肖波  张辉 《地震学刊》2010,(Z1):382-386
与碳纤维与玻璃纤维相同,单向玄武岩纤维布可以通过外粘结工艺用于土木结构的加固。由于用于粘结纤维布的高分子胶粘剂易燃烧,高温软化,本文系统研究了单向玄武岩纤维布增强环氧树脂基湿法浸渍片材的高温中及高温处理后的力学性能。BFRP片材经100、150、200°C处理720小时,冷却后,其拉伸模量保持不变,而拉伸强度在200°C下处理720小时后下降约20%。电子显微镜照片及玻璃化温度变化分析表明,在高温处理过程中,树脂的降解与界面脱粘是导致BFRP拉伸性能下降的主要因素。BFRP的拉伸模量随着试样温度的升高,逐步下降,当达到最大试验温度300°C时,模量下降约35%。BFRP的拉伸强度对试样温度更为敏感。当测试温度超过树脂的玻璃化温度(约82°C)后,BFRP的拉伸强度急剧下降,并趋于稳定,约为室温初始值的45%。当温度超过树脂基体的玻璃化温度后,树脂开始从玻璃态转变为高弹态,不能有效地传递应力,导致BFRP片材的拉伸性能下降。  相似文献   

10.
火灾作用下单层球面网壳的非线性有限元分析   总被引:2,自引:0,他引:2  
基于高大空间建筑火灾作用下的空气升温实用公式,按照欧洲规范规定的火灾高温作用下钢材的材料特性,考虑了温度对钢材特性的影响以及钢材屈服后的强化特征,对一凯维特单层网壳结构在火灾作用下的性能进行了非线性有限元分析,研究其在不同局部火灾作用下的温度场分布和位移特征,以及不同火源影响的最不利位置。结果表明:网壳结构在所有设计火源模型下的极限耐火时间都在20~30min左右;对于结构极限耐火时间,火源位置的影响大于火源面积的影响;结构中心向外延伸的第1环到第3环之间的区域,是结构抗火的薄弱部位。  相似文献   

11.
表面设置防火涂料高强混凝土柱的耐火极限   总被引:1,自引:0,他引:1  
前期试验表明,表面设置厚度20 mm的某非膨胀型防火涂料可较好地抑制高强混凝土的高温爆裂。本文通过试验反算给出了该涂料对应不同温度区间的平均导温系数;随后,利用结构抗火分析软件SAFIR对表面设置该涂料的高强混凝土柱的耐火极限进行了计算分析,考察了截面尺寸、轴压比、荷栽偏心率及配筋率等因素的影响,在此基础上提出了相应的高强混凝土柱耐火极限实用计算公式。研究结果表明:①该涂料的平均导温系数随温度升高有所降低;②表面设置厚度20 mm的该涂料可明显提高高强混凝土柱的耐火极限,提高幅度达40%~350%。  相似文献   

12.
约束高强度Q460钢柱抗火性能分析   总被引:1,自引:0,他引:1  
葛勇  王卫永 《地震学刊》2012,(1):99-104
为了研究高强度约束钢柱在火灾下的反应,根据高强度结构钢Q460在高温下的力学性能参数,建立了约束高强度钢柱受火分析模型,得到了高强度约束钢柱在火灾下的轴向位移、跨中挠度、最大应力以及临界温度。采用有限元分析对理论结果进行了验证,两者吻合很好。利用验证过的该文计算方法计算了2种荷栽比、长细比和约束刚度比条件下的高强钢柱的抗火性能;采用CECS200:2006的力学性能参数计算了约束普通钢柱的抗火性能。通过对高强钢和普通钢的抗火性能分析发现,轴向约束明显降低钢柱的临界温度,长细比、荷载比越大,临界温度越低;高强钢的抗火性能要优于普通钢。  相似文献   

13.
进行了4根GFRP筋混凝土简支梁在ISO834标准升温曲线下的火灾实验,试件依据ACI440.1R-06进行截面设计,分别考虑了不同荷载比、保护层厚度、端部锚固方式对梁耐火性能的影响。试验结果表明,GFRP筋混凝土梁在火灾中的裂纹开展深度较传统的钢筋混凝土结构明显偏大。由于GFRP筋横向膨胀大更易造成梁底混凝土的开裂与剥落,建议在满足纵筋锚固性能要求的前提下,尽量减少端部J型锚固筋。GFRP筋在高温下的材料性能衰减严重,合理的设计保护层厚度和限制GFRP筋的使用内力,可使GFRP筋混凝土梁的耐火性能满足实际工程的需要。  相似文献   

14.
排烟方式对大空间建筑火灾空气升温的影响   总被引:1,自引:0,他引:1  
薛素铎  梁劲  李雄彦 《地震学刊》2010,(5):528-532,543
为了考察烟气排放对大空间建筑火灾温度场的影响,利用FDS程序仿真模拟了火灾场景,系统分析了不同排烟系统对温度场的影响。结果表明:烟气排放对温度的影响较大,最大降温幅度可达原最高温度的50%左右;降温幅度与建筑高度有密切联系;当建筑高度小于12m时,按规范设计的自然排烟系统下的火场温度低于机械排烟的火场温度;当建筑高度达到或超过12m时,自然排烟系统下的火场温度将接近或高于机械排烟的火场温度。  相似文献   

15.
为了分析受火后混凝土框架结构的残余力学性能,基于纤维模型的思路,将梁、柱构件截面划分成多个纤维,可以考虑构件截面的不均匀温度场分布以及受火损伤后材料力学性能的变化。以ABAQUS通用有限元软件为开发平台,利用Python编程语言对其进行二次开发,将SAP2000建立的模型文件导入到ABAQUS中,对基于纤维模型的混凝土框架进行受火后的温度场分析和非线性力学分析。通过一个多层多跨三维混凝土框架火灾反应的实例,对该框架在受火后的力学反应进行了分析,可为评估混凝土框架结构受火后的残余力学性能提供参考。  相似文献   

16.
丁蓬莱  王霆  张巍 《地震学刊》2011,(1):63-67,84
提出了分布式光纤温度传感系统(DTS)时空温度场小波分析方法,完成了监测系统报警算法的设计;应用该算法,对隧道内弱风和强风条件下的模拟实验隧道火灾时空温度场进行了瞬态识别;基于隧道温度场监测数据时空矩阵的提取,对隧道的温度场变化规律做出了分析,并选取Ribo3.7小波基成功识别出隧道火灾时空温度场的奇异点。实验结果表明,基于小波分析定位隧道时空温度场奇异点是一种有效的隧道火灾报警方法。  相似文献   

17.
为有效增强建筑结构的抗震性能、提高建筑抗震水平,对JGN型耐高温建筑结构胶抗震加固性能展开研究。将高活性酚醛胺(T-31)作为主固化剂、聚酰胺树脂(PA)为辅助固化剂,结合气相白炭黑、超细石英砂、石棉纤维、纳米材料、环氧树脂等材料,制备JGN型耐高温建筑结构胶。在高温环境下,使用万能试验机分析不同配比条件对结构胶抗震加固性能的影响。测试主要以拉伸强度、压缩强度以及压缩弹性模量为指标。测试结果表明:当固化剂质量比为45∶15、气相白炭黑掺量为4.5%、超细石英砂掺量为10%、石棉纤维掺量为10.5%、纳米SiO2掺量为3.5%、纳米CaCO3掺量为2.5%时,JGN型耐高温建筑结构胶的拉伸强度和压缩强度更大,压缩弹性模量得到优化,结构胶的抗震加固性能达到最佳状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号