首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Russian system of classification of ore reserves is defined; it includes five categories of reserves. Methods of estimating and designating the four main groups of ore deposits for the purpose of estimating reserves are described. Examples used include sedimentary marine iron, manganese, and bauxite deposits; residual limonitic iron ore, alluvial bauxite, magnetite skarn, copper-bearing sandstones, stratified copper-nickel sulfides, vein disseminated copper in secondary quartzite, lensing pyrite, hydrothermal ore vein, chromite, scheelite skarn, lateritic nickel ores, and placers. --M. Russell.  相似文献   

2.
《International Geology Review》2012,54(11):1241-1270
Origins and positions of gold fields and ores, particularly of placers, in the Yana-Kolyma area and elsewhere in the Northeast, as indicated by the morphostructural analysis and the behavior of gold in endogenic and exogenic processes. – V.P. Sokoloff.  相似文献   

3.
The upper Amur region comprises weathering crusts (waste mantle developed at copper-nickel sulfide deposits included), which appreciably hamper the prospecting for such deposits. In order to develop their prospecting criteria, the composition of linear weathering crusts above a nickeliferous cortlandite dike and barren pyroxenite dike, as well as in the fracture zone above metamorphic rocks, was investigated. The chemical composition of material in the weathering crust and the mineral composition of newly formed clay fractions and heavy concentrate were determined. It was established that weathering crust in the nickeliferous cortlandite dike is characterized by the prevalence of fine jarosite fraction with crystobalite admixture. The heavy concentrate samples contain jarosite along with a small amount of relict sulfides (pyrite and galena) and native gold. These criteria can be used in the prospecting for copper-nickel sulfide mineralization in the upper Amur region and other similar regions.  相似文献   

4.
与镁铁-超镁铁质岩石有关的矿床类型   总被引:5,自引:0,他引:5       下载免费PDF全文
王玉往  王京彬 《中国地质》2006,33(3):656-665
本文综述了近年来的研究成果,介绍了与镁铁质-超镁铁质岩有关的矿床类型和成矿作用。重点讨论的矿种有钒钛磁铁矿、铜-镍、铬铁矿、磁铁矿、铂族、钴、金、镁、磷灰石、金刚石、石棉、蛭石、宝玉石等,涉及的矿床成因类型主要有:岩浆型(包括岩浆熔离、贯入、分异和爆发型)、热液型、矽卡岩型、变质型、火山喷溢型、风化型(包括风化壳和砂矿)以及复合型等。从勘查找矿考虑,可从含矿镁铁-超镁铁质岩石类型入手,结合矿床成因类型和产出构造环境因素,将矿床分为与深成岩、浅成岩和喷出岩有关的三大类和若干亚类矿床,并详细介绍了各类的主要矿床类型、成矿地质特征、成因特点和矿床实例。在此基础上,对与镁铁-超镁铁质岩有关的成矿作用进行了4个层次讨论,包括单一矿床的复合成矿作用、杂岩体本身的不同矿床类型和矿种的组合、不同镁铁-超镁铁质岩套之间的伴生,以及与非超镁铁质岩套的共生与组合。  相似文献   

5.
Nickel and iron–cobalt ores from weathering crusts on ultramafic massifs in the Urals contain elevated PGE concentrations. Platinum group minerals first found in weathering crusts in Russia are primarily represented by Pt-palladium, native platinum, and compounds of Pd and Pt with Bi, Sb, and Te. Platinum group elements are characterized by a high differentiated mobility in the weathering profile. This is manifested by a difference in values of the PGE accumulation coefficient and a spatial separation of local accumulation zones of different PGE. This is also experimentally confirmed by different values of the PGE solubility in natural waters. An important factor of the formation of PGE-rich zones in weathering crusts at the Sakhara and Elizavet ore deposits is their substrate represented by the Sakhara and Uktus massifs of the Ural Platinum Belt. It is supposed that geochemical barriers for the PGE concentration in these weathering crusts were provided by the iron oxide zone and horizons enriched in manganese minerals.  相似文献   

6.
“Nonsulfides” is a term, which comprises a series of oxidized Zn(Pb)-ore minerals. It has also been used to define a special deposit type, mainly considered as derived from the weathering of Zn(Pb) sulfide concentrations. However, nonsulfide zinc deposits have been distinguished between supergene and hypogene, according to their mineralogy, geological characteristics and genetic setting. The supergene deposits formed by weathering and oxidation at ambient temperatures, whereas the hypogene ones are considered hydrothermal, or associated with metamorphic processes on primary sulfide ores.In this review paper, a comparison between a number of several nonsulfide deposits has been carried out: typical “Calamines”, peculiar “Calamines” and “Others”. The whole group comprises deposits of typical supergene origin, mixed supergene–hypogene mineralizations, and oxidized concentrations characterized by different metals only locally associated with zinc. The Zn–Pb nonsulfide concentrations hosted in carbonate rocks, which are mainly attributed to “wall-rock replacement” and “direct-replacement” supergene processes, are the typical “Calamines” (Liège district, Belgium; Iglesias district, Italy; Silesia–Cracow district, Poland). Peculiar “Calamine” deposits are those mineralizations that have been generally considered as supergene, but which are instead genetically related, at least partly, to hypogene processes (e.g. Angouran, Iran; Jabali, Yemen), though mineralogically and texturally similar to supergene nonsulfide deposits. The “Others” are prevailingly supergene nonsulfide zinc deposits not hosted in carbonate rocks (Skorpion, Namibia; Yanque, Peru), or characterized by other metals as main commodities, like lead (Magellan, Australia), silver (Sierra Mojada, Mexico; Wonawinta, Australia) or vanadium (Otavi Mountainland, Namibia).Minerals of current economic importance in most “Calamine” deposits are smithsonite, hydrozincite, and cerussite. This mineralogical association is generally simple but, when the “Calamines” are dolomite-hosted, one of the consequences of the “wall-rock replacement” process is the generation of a series of economically useless Zn- and Mg-bearing mixed carbonate phases. Secondary deposits hosted in silicatic (sedimentary or volcanic) rocks mainly contain hemimorphite and/or sauconite. Lead-, Ag- and V-rich nonsulfide ores are characterized by a more complex mineralogical association: mixed Pb-carbonates, Pb-sulfates, Pb-phosphates, Pb-arsenates, various Ag-sulfosalts, and Zn–Pb–Cu-vanadates.Carbon and oxygen stable isotope studies allow distinguishing between supergene and hypogene nonsulfide deposits, evaluating the effects of oxidative heating and even gaining indirect paleoclimatic information. The oxygen-isotope variation of the individual carbonate minerals within a deposit is relatively small, indicating constant formation temperatures and a single, meteoric fluid source. Carbon-isotope values are highly variable, thus suggesting several isotopically distinct carbon sources.Periods of paleoclimatic switch-overs from seasonally humid/arid to hyperarid have been considered as the most favorable conditions for the formation and preservation of supergene nonsulfide deposits. However, while several recent nonsulfide deposits throughout the world are positioned between 15° and 45° N latitude, thus pointing to a warm and humid weathering climate, others have been deposited in sub-Arctic regions.The economic value of the nonsulfide Zn(Pb–Ag–V) ores is highly variable, because more than in the case of metallic sulfide deposits, it resides not only on the geological setting, but also on their mineralogy that can directly influence processing and metallurgy.  相似文献   

7.
New data on the Akkermanov deposit characterized by specific structure and composition of primary (carbonate) and secondary (manganese oxide) ores are presented. Distribution of mineralization in host rocks and weathering crusts is considered. It is shown that manganiferous carbonate rocks, which host orebodies, formed in a marine basin with well-aerated bottom waters. Oxide ores are mainly composed of crystalline pyrolusite produced by multiple processes of the oxidation of manganese compounds. In this respect, the Akkermanov deposit differs drastically from all manganese deposits developed in Russia and Ukraine.  相似文献   

8.
环太平洋地区的矽卡岩矿床   总被引:4,自引:1,他引:4  
赵一鸣 《矿床地质》1991,10(1):41-51
环太平洋地区是世界上最重要的巨型矽卡岩矿床成矿带。在地跨亚、美、澳三大洲二十多个沿岸国家中,共分布有一千多个不同类型的矽卡岩矿床。按含矿矽卡岩主要金属元素的不同,可把本区矽卡岩矿床划分为铁、铜、铅-锌、钨、锡、钼、金七类。文中对各类矽卡岩矿床的分布和主要地质特征作了概括介绍。按含矿矽卡岩矿物组合的不同,又可分为镁矽卡岩型、钙矽卡岩型、锰质矽卡岩型和碱质矽卡岩型四类。太平洋东西两岸的矽卡岩矿床有许多共同点,但在矿化强度、分布规律和成矿时代等方面又有一定差异。文中还论述了本区矽卡岩矿床的成矿系列和岩浆岩成矿金属性问题。  相似文献   

9.
The composition and metallogeny of igneous rocks and relevant weathering crusts of Jurassic–Cretaceous provenances of the Russian Platform are considered. It is shown that the association of metals that accumulated in the process of weathering and erosion of ancient substratum includes P, Fe, Ti, V, and Cr. This process is reflected in the formation of nodular phosphorites, Ti and Zr placers, and iron ore deposits in the Jurassic–Cretaceous seas of the platform.  相似文献   

10.
Platinum-group minerals (PGM) in primary ores and placers are compared in order to substantiate prospecting guides for layered and differentiated intrusions containing sulfide Cu-Ni ores with platinum-group elements (PGE). It is shown that supergene placer mineral assemblages bear information on primary sources and their probable economic value. The mineralogical and geochemical data on the large Siberian intrusions that host Cu-Ni and low-sulfide PGM deposits (Noril’sk 1, Kingash, Chinei, and Yoko-Dovyren) are used to elaborate mineralogical prospecting guides based on the comparative study of PGM assemblages in primary ore, heavy concentrate halos, and hillside sediments. The mechanism of PGM redistribution under supergene conditions is exemplified in the Chinei deposit. The placer mineral assemblage with prevalence of Pt-Fe alloys, atokite-rustenburgite, sperrylite, and multicomponent Pd-Sn-Cu-Pb compounds can be used as a prospecting guide for Noril’sk-type primary PGM ore and related economic placers. The paolovite-sperrylite or sperrylite PGM assemblage in heavy concentrate halos indicates occurrence of Cu-Ni ore in the prospecting area. Sperrylite with isomorphic admixture of Ir and Os typical of the Kingash pluton could be a orospecting guide for Ni-bearing mafic-ultramafic intrusions.  相似文献   

11.
The Dambuki ore cluster of the Upper Amur region is characterized by numerous and high-grade gold placers. A few small primary deposits and occurrences of gold-quartz type were formerly considered to be the main source of placers. However, the study of widespread Early Cretaceous Cu- and Ni-bearing ultramafic intrusions has shown that gold occurring in primary Cu-Ni ores and products of their weathering practically does not differ from placer gold in morphology, fineness, or geochemical features. In both cases, elements typical of Cu-Ni ore (Cu, Fe, Pd, Ni, etc.) are detected as impurities of gold particles. These data indicate that the Au-and Pt-bearing Cu-Ni ore mineralization may be the main source of placer gold. This ore mineralization is genetically related to small pyroxenite-cortlandite sills and dikes, abundant in the Dambuki ore cluster. The primary gold-quartz deposits and occurrences also contributed to the placers, but their part was rather small.  相似文献   

12.
Placer gold grains in the Nilambur Valley of Wynad Gold Field in southern India are characterized by very high purity levels (985–1000). Their Ag-depleted core compositions, enhanced grain size and microscale growth patterns correlate with gold grains associated with laterite profiles in the weathering fronts. From the morphological and chemical evolution of gold grains associated with primary, supergene and secondary deposits in this region, we identified a two-stage process for the evolution of the highly pure placers, which shows that gold in the primary veins was mobilized, chemically purified, and reconcentrated in the laterite profiles, effecting enhanced purity and grain growth before transfer to the fluvial system. Further refinement was achieved during fluvial transport, generating natural concentrations of pure gold in the placers.  相似文献   

13.
Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon and nitrogen have been detected with SEM on the surface of gold spherules from Guinea. Such organic compounds as serine, alanine, and glycine are identified on their surface with Raman spectroscopy. The experiments have been carried out and new data have been obtained indicating the role of micromycetes in concentration and distribution of noble metals in ferromanganese nodules of the World Ocean. Au and Pt were detected in the system with radioisotopes. It has been established that two forms of gold distribution develop within pseudomorphs of fungi colonies: (1) as pseudomorphic concentrates and (2) dispersed form unrelated to the colony structure. Inhomogeneities in distribution of dispersed platinum are manifested in the form of linear anomalies with elevated concentrations at the margins of the colonies.  相似文献   

14.
从金的地球化学性质、矿床类型、时空分布、富集规律、成矿作用、金矿勘探开发等5个方面列举了金矿床不同于其他金属矿床的特殊性,认为应建立针对金矿自身特点的成矿理论以及研究和找矿方法;指出了目前在金矿研究、勘探等方面存在的4个缺陷;提出了今后工作中亟待解决的4个问题.  相似文献   

15.
Zaykov  V. V.  Kotliarov  V. A.  Zaykova  E. V.  Blinov  I. A. 《Doklady Earth Sciences》2017,476(2):1212-1216

Microinclusions of ore minerals were found and studied in grains of native gold for characterization of the mineralogy of placer gold of the South Urals. One hundred ten unrounded and poorly rounded grains with a size of 1–2 mm from eight placer zones were studied. Microinclusions of ore minerals were detected in six placers of the Miass zone. The list of minerals includes sulfides, arsenides, Cu-bearing Au, and PGEs. All microinclusions show links to certain deposits of ore gold and chromite occurrences. It is suggested that the northern flanges of the Talovsky and Nurali massifs containing gold placers with PGEs require a search for PGE mineralization.

  相似文献   

16.
Holocene shallow (0.5–4.5 m, rarely more) and Pliocene–Pleistocene deep (> 25 m) placers occur within the China tectonic depression. The shallow placers are associated with the formation of the present-day drainage valleys of the China River under permafrost conditions, and the deep ones are localized within the preglacial paleovalleys of the river basin. An integrated geological and geochemical study was carried out at ten shallow commercial placers, eight of which are classified as poorly studied and “unconventional.” Placers are considered “unconventional” based on their technological characteristics (commercial gold is small (? 0.25 to + 0.1 mm), thin (? 0.1 mm), and micron-sized or “bound” (invisible)), geomorphologic conditions of formation, confinement to the oxidized zone of active permafrost, significant portion of fine hydrogenic gold, and several other minor features.The formation of shallow “unconventional” placers is controlled by the conditions of active permafrost. Under aerobic conditions, suprapermafrost waters form an oxidized zone, in which iron hydroxides impart a yellowish reddish color to water-bearing rocks. Long-lived geochemical barriers (biogenic, reduction, electrochemical, sorption, and others), including gravitational differentiation, play an important role in the concentration of small and thin gold.Alluvial deposits in Meso-Cenozoic tectonic depressions, such as the China basin, are the most promising in terms of “unconventional” placers. The main factors favoring the formation of these localities and the criteria for their assessment are large feeding sources of gold (mainly carbonaceous and sulfide) mineralization, endogenic and exogenic dispersion aureoles with thin and invisible gold; increased thickness of the suprapermafrost active layer and its temporal and spatial stability, contributing to the formation and functioning of oxidized horizons with the accumulation of ferric hydroxide and hydrogenic gold; specific morphologic varieties of hydrogenic gold, which are the fundamental criterion for primary gold mineralization with migratable metal; fine-clastic clay-rich composition of recent alluvial or alluvial-talus sediments, produced by water reworking of ancient gold-bearing weathering crusts; and development of broad floodplains filled with Holocene sediments and their junction with talus-solifluction erosional slopes.  相似文献   

17.
The Nanling Range in South China hosts numerous world-class W–Sn deposits and some Fe deposits. The Mesozoic Tengtie Fe skarn deposit in the southern Nanling Range is contemporaneous with the regional Sn mineralization. The deposit is composed of numerous ore bodies along the contacts between the late Paleozoic or Mesozoic carbonate rocks and the Yanshanian Lianyang granitic complex. Interaction of the magma with hosting dolomitic limestone and limestone formed calcic (Ca-rich) and magnesian (Mg-rich) skarns, respectively. The Tengtie deposit has a paragenetic sequence of the prograde stage of anhydrous skarn minerals, followed by the retrograde stage of hydrous skarn minerals, and the final sulfide stage. Magnetite in the prograde and retrograde skarn stages is associated with diopside, garnet, chlorite, epidote, and phlogopite, whereas magnetite of the final stage is associated with chalcopyrite and pyrite. Massive magnetite ores crosscut by quartz and calcite veins are present mainly in the retrograde skarn stage. Laser ablation ICP-MS was used to determine trace elements of magnetite from different stages. Some magnetite grains have unusually high Ca, Na, K, and Si, possibly due to the presence of silicate mineral inclusions. Magnetite of the prograde stage has the highest Co contents, but that of the sulfide stage is extremely poor in Co which partitions in sulfides. Magnetite of magnesian skarns contains more Mg, Mn, and Al than that of calcic skarns, attributed to the interaction of the magma with compositionally different host rocks. Magnetite from calcic and magnesian skarns contains 6–185 ppm Sn and 61–1246 ppm Sn, respectively. The high Sn contents are not due to the presence of cassiterite inclusions which are not identified in magnetite. Instead, we believe that Sn resides in the magnetite structure. Regionally, intensive Mesozoic Sn mineralization in South China indicates that concurrent magmatic–hydrothermal fluids may be rich in Sn and contribute to the formation of high-Sn magnetite. Our study demonstrates that trace elements of magnetite can be a sensitive indicator for the skarn stages and wall-rock compositions, and as such, trace elemental chemistry of magnetite can be a potentially powerful fingerprint for sediment provenance and regional mineralization.  相似文献   

18.
Vostok-2—East Russia’s largest skarn deposit of high-grade sulfide-scheelite ore with substantial base-metal and gold mineralization—was formed during the Mesozoic orogenic epoch of evolution of the Far East marginal continental system as an element of the gold-tin-tungsten metallogenic belt. The deposit is related to the multistage monzodiorite-granodiorite-granite complex pertaining to the ilmenite series and spatially associated with a minor granodiorite porphyry (?) stock, which bears petrological features transi- tional to those of intrusive rocks occurring at Au-W and Au deposits. The hydrothermal metasomatic alteration of host rocks evolved from pyroxene skarn via retrograde postskarn and propylitic (hydrosilicate) metasomatic rocks to the late, low-temperature quartz-sericite metasomatic rocks often with albite, chlorite, carbonate, and apatite. The mineral assemblages of skarn and postskarn metasomatic rocks correspond to those at the reduced-type tungsten skarn deposits. Zoning of the postskarn metasomatic rocks is controlled by granodiorite stock. The hydrothermal metasomatic alteration was accompanied by development of mineralization from scheelite via sulfide-scheelite with pyrrhotite and chalcopyrite to the gold-base-metal-scheelite assemblage with arsenopyrite, Bi-Sb-Te-Pb-Zn sulfides and sulfosalts. Several scheelite generations are recognized. Scheelite of the late generations is enriched in Eu, as is typical of gold deposits. The associated gold mineralization comprises both native gold varying in fineness and Au-bearing arsenopyrite. The significant gold mineralization emphasizes genetic links of this deposit with intrusion-related Au-W and Au deposits of the reduced type.  相似文献   

19.
Seven main ore-forming systems—porphyry and epithermal; orogenic related to granitic intrusions; magmatic ultramafic; volcanic-hosted massive sulfide and volcanic–sedimentary; sedimentary basins; related to alkaline magmatic activity; and placers and weathering mantles—are sources of high-tech critical metals. The following promising types of ore deposits containing high-tech critical metals as by-products are recognized: Cu–Mo porphyry, Fe–Cu–Au and Pb–Zn skarn, base-metal epithermal, volcanic-hosted massive sulfide, base-metal stratiform, various tin deposits, and placers containing rare metals including REE. The mineral resources of critical metals in Russia are compared with those known in other countries. The contents of high-tech critical metals in ores of some noble-metal deposits of the Russian Northeast are reported. It is shown that the subsurface of Russia possesses considerable mineral resource potential for hightech critical metals, which allows new enterprises to be created or production of operating enterprises to increase.  相似文献   

20.
The supergene Au in weathering crusts of both the Suzdal and Raygorodok deposits is characterized by enhanced fineness, grain size, crystallinity, and the appearance of botryoidal aggregates of crystals. In the weathering crust of the Suzdal deposit, the exogenous Au is associated primarily with scorodite and carbonates; for Raygorodok, with chalcocite, bornite, hydrocarbonates and Cu hydrosulfates. The difference in the mineral associations of supergene Au at the deposits is determined by the occurrence of various mineral concentrators of Au in the primary endogenous substrate: arsenopyrite and pyrite at the Suzdal deposit and chalcopyrite with pyrite at the Raygorodok deposit. Due to the much greater mobility of Ag in the supergene zone, the weathering crusts are likely to contain submicron microinclusions of Ag minerals beyond the zones of Au concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号