首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
During certification of free-fall lifeboats, it is necessary to infer the injury potential of the acceleration forces exerted on the occupants during water entry. Such an evaluation is required by the International Maritime Organization (IMO) and most regulatory authorities. The dynamic response model and the square-root sum of the squares method are two criteria included in the IMO recommendation for testing lifeboats. At least one national authority requests use of the Hybrid III human surrogate when inferring injury potential. The purpose of this paper is to compare the potential for injury as indicated with the IMO criteria and that obtained through use of the Hybrid III manikin. The comparison is based on data obtained during prototype tests with full-scale free-fall lifeboats launched from heights of up to 30 m.  相似文献   

2.
楔形体在波浪中自由入水的数值模拟   总被引:1,自引:0,他引:1  
物体入水时波浪的影响不可忽略,基于流体力学模型采用VOF法,并利用自定义函数,模拟了楔形体的自由入水过程;同时结合推波板原理及海绵层消波理论实现了数值水槽的造消波,完成了波浪中楔形体自由入水的模拟,计算了楔形体入水时所受的水作用力、自由液面变化及物面压强分布等,研究了不同波高、周期以及在波浪不同位置入水时对楔形体的影响。结果表明:本文建立的数值模型可很好地模拟楔形体入水造成的射流及空泡的形成发展过程,波浪对楔形体入水的影响主要由波浪内部流场变化及表面波形决定,在波浪不同位置处入水对楔形体受力及入水形态均有较大影响。  相似文献   

3.
Impact problems associated with water entry have important applications in various aspects of naval architecture and ocean engineering. Estimation of hydrodynamic impact forces especially during the first instances after the impact is very important and is of interest. Since the estimation of hydrodynamic impact load plays an important role in safe design and also in evaluation of structural weight and costs, it is better to use a reliable and accurate prediction method instead of a simple estimation resulted by analyzing methods. In landing of flying boats, some phenomena such as weather conditions and strong winds can cause asymmetric instead of symmetric descent. In this paper, a numerical simulation of the asymmetric impact of a wedge, as the step of a flying boat, considering dynamic equations in two-phase flow is taken into account. The dynamic motion of the wedge in two-phase flow is solved based on finite volume method with volume of fluid (VOF) scheme considering dynamic equations. Then the effects of different angles of impact and water depth on the velocity change and slamming forces in an asymmetric impact are investigated. The comparison between the simulation results and experimental data verifies the accuracy of the method applied in the present study.  相似文献   

4.
The purpose of this paper is to validate a new method that can be used by offshore platform designers to estimate the added mass and hydrodynamic damping coefficients of potential Tension Leg Platform hull configurations. These coefficients are critical to the determination of the platform response particularly to high frequency motions in heave caused by sum-frequency wave forcing i.e. “springing”. Previous research has developed the means by which offshore platform designers can extrapolate anticipated full-scale hydrodynamic coefficients based on the response of individual model scale component shapes. The work presented here further evaluates the component scaling laws for a single vertical cylinder and quantifies the effects due to hydrodynamic interaction. Hydrodynamic interaction effects are established through a direct comparison between the superposition of individual hull component coefficients and those evaluated directly from complete hull configuration models. The basis of this comparison is established by the experimental evaluation of the hydrodynamic coefficients for individual hull components as well as partial and complete platform models. The results indicate that hydrodynamic interaction effects between components are small in heave, and validate component scaling and superposition as an effective means for added mass and damping coefficient estimation of prototype platforms. It is found that the dependency of damping ratio with KC for a TLP is almost identical to that of a single column, thus offering a scaling methodology for prototype damping ratio values.  相似文献   

5.
Operations involving the launch or recovery of a smaller vessel from a larger one are extremely dangerous in high sea states and, therefore, they are normally carried out in low to moderate sea states. However, this can be severely restrictive and in some situations, carrying out such operations in high sea states is unavoidable. Here we report on a detailed investigation of the interaction between two vessels of different size in order to characterise their hydrodynamic interaction under different conditions and to provide insight for operational purposes. Model experiments were conducted to investigate the hydrodynamic interaction between two vessels in close proximity in waves. Previous studies into this interaction have focused on two vessels with comparable size/displacement. This study focused on the interaction between vessels of very different sizes, a platform supply vessel and a lifeboat, at various separation distances between the two models and wave headings. It is found that the effect of the hydrodynamic interaction on the wave loads on the lifeboat model is substantial. The load responses show a strong non-linearity (high order harmonic components). In head waves, the effect of the hydrodynamic interaction on the wave loads is greater in the transverse modes (sway, roll and yaw) than in the longitudinal modes (surge, heave and pitch). The sheltering effects of the larger model on the lifeboat model were also evident from the experiments. The results of this investigation may be used to inform the planning of marine operations, such as the launch and recovery of a lifeboat or an Autonomous Underwater Vehicle (AUV) from a mothership and the transfer of equipment or personnel between vessels. The data will also provide a useful resource for validation of Computational Fluid Dynamics (CFD) codes and other numerical simulations, and can be used to better understand the limitations and potential widening of the operational weather windows and to ensure that operations are carried out safely.  相似文献   

6.
This paper presents results of experimental deployment of a large instrumented cylinder of variable nose geometry and center of mass offset (CMO) in free-fall in realistic environment. Data on four tests series in the Gulf of Mexico are presented and analyzed statistically. The stochastic nature of the problem of the cylinder free-falling through water is outlined and described as an input to the subsequent impact burial prediction package. Significance of the CMO on the behavior of the cylinder is underlined. Influence of the release conditions on trajectory is discussed and found to affect the behavior of the cylinders only in the first 3.5 m of free-fall in water. Beyond this depth, quasi-stable (in the mean sense) conditions are achieved. Effects of three different nose shapes-blunt, hemispherical, and chamfered-on cylinder behavior are analyzed and found to have a pronounced influence on the fall trajectory. The blunt nose shape appears to be hydrodynamically most stable in free-fall. Apparent periodicity in motions of all cylinders were noted and were found to be the function of the CMO and nose shape primarily. Implications of these and other findings on modeling and impact burial predictions are discussed.  相似文献   

7.
During severe storms, evacuation systems for offshore rigs and platforms currently in use have proven themselves to be inadequate. Typically, during deployment of a lifeboat, it is often damaged to the point of not being seaworthy before it reaches the ocean surface. This is especially the case for cable-launched boats where a pendulum-like motion of the craft on its cables is often set up. It is less of a problem for free-fall lifeboats. Even when a craft reaches the ocean surface intact, high winds and waves can drive it back against the rig/platform structure. This paper describes the state-of-the-art of evacuation. It focuses on two new systems being developed by the authors in Newfoundland, Canada.  相似文献   

8.
For the study of the cross-shore wave-induced hydrodynamics in the swash zone, a numerical model is developed based on the one-dimensional non-linear shallow water (NSW) equations for prediction of hydrodynamic parameters in the swash zone. In order to evaluate the accuracy of the outputs of the numerical model, the model's predictions in terms of water surface elevations and cross-shore velocities, are compared to field data from full-scale experiments conducted on three sites with different beach slope; mild and steep, several bed particle sizes and under various incident wave conditions. The quantitative and qualitative comparison of the results of the numerical model and the full-scale data reveals that the model can generally predict many aspects of the flow in the surf and swash zone on both types of beach. The accuracy is adequate for application in a sediment transport study. Considering the time-history and probability distribution of water surface elevation, the model is generally more accurate on steep beaches than on the mild beach. The model can adequately simulate the dominant frequency across the beach and saturation of higher frequencies on both mild and steep beaches for various incident wave energy characteristics. With regard to the horizontal (cross-shore) velocity, the sawtooth shape of time-history and negative acceleration of water are well predicted by the model for both mild and steep beaches. Due to the uncertainties in maximum and minimum values of velocity data, clear judgement about the accuracy of the numerical model in this matter was not possible. However, the comparison of the minimum velocities (offshore direction) revealed that the application of friction factors below the range which is suggested by literature best match the data.  相似文献   

9.
This paper describes the extension of a fluid-flow simulations method to capture the free surface evolution around a full-scale Tension Leg Platform (TLP). The focus is on the prediction of the resulting hydrodynamic loading on the various elements of the TLP in turbulent flow conditions and, in particular, on quantifying the effects of the free surface distortion on this loading. The basic method uses finite-volume techniques to discretize the differential equations governing conservation of mass and momentum in three dimensions. The time-averaged forms of the equations are used, and the effects of turbulence are accounted for by using a two-equation, eddy-viscosity closure. The method is extended here via the incorporation of surface-tracking algorithm on a moving grid to predict the free-surface shape. The algorithm was checked against experimental measurements from two benchmark flows: the flow over a submerged semi-circular cylinder and the flow around a floating parabolic hull. Predictions of forces on a model TLP were then obtained both with and without allowing for the deformation of the free surface. The results suggest that the free surface effects on the hydrodynamic loads are small for the values of Froude number typically encountered in offshore engineering practice.  相似文献   

10.
A 30-d current numerical simulation is running for the Yangshan Port, the Changjiang Estuary, the Hangzhou Bay and their adjacent seas using a finite volume coastal ocean model (FVCOM), with Changjiang River runoff and wind effect being considered. At the open boundary, this model is driven by the water level obtained from prediction including eight main partial tides. After the harmonic analysis, the cotidal chart and the iso-amplitude line as well as the current ellipse distribution map are displayed to illustrate the propagation property of a tidal wave. Horizontal velocity of both the U and V components coincides with the actual measurement, which shows that the model result is credible to describe the hydrodynamic pattern in this sea area. On this basis, real-time current data from high-frequency radar is assimilated with the implementation of quick ensemble Kalman filter, which takes the variation tendency of the state vector to compute the analysis field, instead of integrating the field for N (the number of ensemble) times as it used to in the standard EnKF, aiming at raising the efficiency of computation, reducing the error of prediction and at the same time, improving the forecast effect.  相似文献   

11.
On the heave radiation of a rectangular structure   总被引:2,自引:0,他引:2  
In this paper, an analytic solution to the heave radiation problem of a rectangular structure is presented. To solve the problem analytically, the nonhomogeneous boundary value problem is linearly decomposed into homogeneous ones, which can be readily solved. To provide further comparisons to the present analytic solution, a boundary element method is also presented to solve the problem. The present analytic solution is compared with the result by Black et al. [(1971)] Radiation and scattering of water waves by rigid bodies. J. Fluid Mech. 46, 151–164], and the boundary element solution, and the comparisons show very good agreements. Upon examination of the present analytic solution, it is shown that the solution satisfies the nonhomogeneous boundary condition in a sense of series convergence. Using the present analytic solution, the generated waves, the added mass and the radiation damping coefficients, as well as the hydrodynamic effects of the submergence and the width of the structure, are investigated.  相似文献   

12.
Tidal basins are made of several elements that have achieved morphological equilibrium and have been affected by hydrodynamic forces over the centuries with its present form. In addition to the effects of hydrodynamic forces, morphological equilibrium is also affected by the sediment parameters. In this study, the effects of sediment characteristics on the long-term morphology of tidal basins were evaluated. A realistic analogue method was used to illustrate the final form of basin morphology after reaching the equilibrium. Also, the effects of important sedimentary parameters were evaluated to provide the long-term forecast of the morphology comprehensively. Instead of trying to replicate the exact conditions in a particular period of time, the present study aimed to directly investigate the process and effects of the main parameters.In this study, Tiab estuary was considered as a numerical laboratory and enough observations were produced to assess the impact of sedimentary parameters on the morphological equilibrium. In this research, a realistic method was used to model the bed by assessing the impact of morphological changes. The assessment of sedimentary parameters was carried out in the presence of two main hydrodynamic components: wave and tide. Given the computational cost of the long-term morphology models and numerous models needed to evaluate the sediment parameters, statistical methods were used to design the optimal scenarios which is a new method in the analysis of morphological information. A comparison of the model's results and the measured hydrography revealed the validity of the proposed method.  相似文献   

13.
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al.(2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.  相似文献   

14.
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.  相似文献   

15.
The effect of the asymmetric water entry over a submerged part of a ship on the hydredynamic impact is investigated numerically. A wedge hotly is considered and the problem is assumed to be two-dimensional. The results of symmetric and asymmetric impacts are compared. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle of 10 degrees becomes about 95% more than that of the symmetric entry. The result of the present work proves the importance of asymmetrical hydrodynamic impact loading for structural design of a ship. Besides, the numerical procedure is not limited to a wedge type cross section and it is possible to apply it for any real geometry of ships and high-speed craft.  相似文献   

16.
A physics-based computational model has been developed that is capable of reliably predicting the motion of a 3-D mine-shaped object impacting the water surface from the air, and subsequently, dropping through the water toward the sea bottom. This deterministic model [mine's six-degree-of-freedom dynamics (MINE6D)] accounts for six-degree-of-freedom motions of the body including unsteady hydrodynamic interaction effects. MINE6D allows for physics-based modeling of other hydrodynamic effects due to water impact, viscous drag associated with flow separation and vortex shedding, air entrainment, and realistic flow environments. To demonstrate the efficacy of the model, we compare deterministic MINE6D predictions with tank drops tests and field measurements. MINE6D captures the myriad of complex 3-D motions of cylindrical mines observed in field and laboratory experiments. For relatively simple straight motions, it obtains quantitative comparisons with the field measurements for the kinematics of mines freely dropping in the water including water impact and air cavity effects. In practical applications, the environments are often quite irregular, and the releasing conditions are also with uncertainties. To provide some guidance in understanding and interpreting statistical characterizations of mine motions in practical environments, we perform Monte Carlo simulation using MINE6D. These statistical results are not only the essential input for stochastic bottom impact and burial predictions of mines but also useful for the design of mines.  相似文献   

17.
针对水下机器人操纵性优化设计中水动力系数预报问题,在水下机器人水动力预报中引入艇体肥瘦指数概念,确定了水下机器人艇体几何描述的五参数模型。提出采用小波神经网络方法预报水下机器人水动力,确定了神经网络的结构,利用均匀试验设计方法,设计了神经网络的学习样本。研究结果表明,只要确定适当的输入参数,选择适当的学习样本和网络结构,利用小波神经网络方法对水下机器人水动力进行预报可以达到较好的精度。  相似文献   

18.
In the consideration of safety it is required that packages containing radioactive wastes when dumped at sea should keep their integrity and retain their contents until they reach the seabed. Packages containing simulated radioactive wastes (non-radioactive) were tested by a free-fall method at depthsca. 4,300 m in an area for dumping industrial waste off Shikoku Island. Since the weight of the largest package was 4,300 kg, special attention was paid to the connection of a buoyancy system with mooring rope. Descent and ascent velocities of the free-fall system were calculated prior to the experiment. A free-fall experiment with an extremely heavy object, heavier than ever previously reported, was accomplished without trouble by using the free-fall system. Recovery of a camera, flash-light, and other components was successful in each of the three experiments. Successive photographing of the package during descent was made and its integrity was observed using the photographs taken by the recovered camera. The packages remained intact during descent and at least for a short time after arrival on the seabed.  相似文献   

19.
Copepod species of the genus Neocalanus dominate the zooplankton biomass of the oceanic subarctic Pacific Ocean. Neocalanus spp. populations in the subarctic Pacific environment are successful: they feed, accumulate lipid, and persist from year to year. Prior experimental observations derived from a variety of methods indicated that, although their functional morphology is such that they clear the small phytoplankton cells characteristic of the oceanic subarctic Pacific environment efficiently, Neocalanus spp. do not consume sufficient phytoplankton to meet even basic metabolic requirements in that environment. Hence, their success in the subarctic Pacific must depend on their ability to obtain nutrition from other sources. As part of the SUPER (SUbarctic Pacific Ecosystem Research) program, experiments were performed to test the hypothesis that N. plumchrus and N. cristatus obtain a significant portion of their nutrition from planktonic Protozoa. The experiments demonstrate that Protozoa alone do not provide sufficient nutrition for N. cristatus to meet its basic metabolic needs. Protozoa constitute the major dietary component of N. plumchrus however, in agreement with the predictions of Frost's (1987) model of the subarctic Pacific ecosystem. At a minimum this diet permits N. plumchrus to meet basic metabolic requirements. Copepod grazing activities appear to be sufficient to control protozoan stocks in the oceanic subarctic Pacific during late spring and early summer when Neocalanus spp. inhabit the upper water column.  相似文献   

20.
This paper reports on the prediction of the hydrodynamic forces on a full-scale mini Tension Leg Platform (TLP) of the type typically deployed for deep-sea operation. Two alternative prediction techniques were used: Computational Fluid Dynamics (CFD), which is based on the solution of the fundamental equations that govern turbulent fluid flow; and ‘engineering’ calculations based on force coefficients derived from a design code that is in routine use in the Offshore Industry. The results from these two techniques were compared with each other and with experimental data obtained from wind-tunnel and towing-tank tests on a 1–70 scale model. It was found that the two techniques, while yielding very similar predictions for the front TLP members, give substantially different predictions for the aft members — a result that is consistent with the presence of significant interference effects that are captured only by the CFD. The design code yielded the highest value for the global drag coefficient, followed very closely by the towing-tank result. The wind-tunnel tests produced the lowest value for this parameter. The CFD predictions, which were the first to be obtained in this study, fall in the mid-range of the experimental values. These and other results are discussed in the context of the use of CFD in practical design applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号