首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
相对海平面上升引发的海岸潜在侵蚀是海岸带资源利用与规划的重点关注内容.基于杭州湾北岸龙泉—南竹港岸段实测断面资料,利用历史岸线后退和淹没法则计算法分析了该地区的海岸变化对海平面上升的响应.结果表明:近10 a来岸滩呈侵蚀后退趋势,年侵蚀速率为3.7~5.7 m/a,相对海平面上升对岸滩迁移后退的贡献为2%~6%;未来1...  相似文献   

2.
The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s, 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium criterion; this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus, in terms of the Bruun approach, relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.  相似文献   

3.
依据地质钻探和海滩观测资料,分析了后江湾海岸在海进作用下,海岸形成海进地层层序。滨面遭受侵蚀并正在后退和变陡。晚更新统陆相杂色粘土层和砾砂层直接暴露于海底。在海域供沙不足的情况下,整个海湾的海滩被侵蚀后退,而海滩各岸段侵蚀程度存在差异。  相似文献   

4.
Storms and shoreline retreat in the southern Gulf of St. Lawrence   总被引:1,自引:0,他引:1  
Storms play a major role in shoreline recession on transgressive coasts. In the southern Gulf of St. Lawrence (GSL), southeastern Canada, long-term relative sea-level rise off the North Shore of Prince Edward Island has averaged 0.3 m/century over the past 6000 years (>0.2 m/century over 2000 years). This has driven long-term coastal retreat at mean rates >0.5 m/a but the variance and details of coastal profile response remain poorly understood. Despite extensive sandy shores, sediment supply is limited and sand is transferred landward into multidecadal to century-scale storage in coastal dunes, barrier washover deposits, and flood-tidal delta sinks. Charlottetown tide-gauge records show mean relative sea-level rise of 3.2 mm/a (0.32 m/century) since 1911. A further rise of 0.7±0.4 m is projected over the next 100 years. When differenced from tidal predictions, the water-level data provide a 90-year record of storm-surge occurrence. Combined with wind, wave hindcast, and sea-ice data, this provides a catalogue of potentially significant coastal storms. We also document coastal impacts from three recent storms of great severity in January and October 2000 and November 2001. Digital photogrammetry (1935–1990) and shore-zone surveys (1989–2001) show large spatial and temporal variance in coastal recession rates, weakly correlated with the storm record, in part because of wave suppression or coastal protection by sea ice. Large storms cause rapid erosion from which recovery depends in part on local sand supply, but barrier volume may be conserved by washover deposition. Barrier shores with dunes show high longshore and interdecadal variance, with extensive multidecadal healing of former inlet and overwash gaps. This reflects recovery from an episode of widespread overwash prior to 1935, possibly initiated by intense storms or groups of storms in the latter half of the 19th century. With evidence from the storms of 2000–2001, this points to the importance of storm clustering on scales of weeks to years in determining erosion vulnerability, as well as the need for a long-term, large-scale perspective in assessing coastal stability. The expected acceleration in relative sea-level rise, together with projections of increasing storm intensity and greatly diminished winter ice cover in the southern GSL, implies a significant increase in coastal erosion hazards in future.  相似文献   

5.
The San Juan River has one of the most extensive and best developed deltas on the Pacific coast of South America, measuring 800 km2. The river drainage basin measures 16?465 km2 and is located in one of the areas with the highest precipitation in the western hemisphere. The annual rainfall varies from 7000 to 11?000 mm, and as a result the San Juan River has the highest water discharge (2550 m3 s−1), sediment load (16×106 t yr−1), and basin-wide sediment yield (1150 t km−2 yr−1) on the west coast of South America. The San Juan delta growth began approximately 5000 years BP. The structure of the delta is determined by the interactions between fluvial deposition and the effect of 1.7-m significant swells, mostly from the SW, and strong tidal currents. Analysis of delta progradation indicates that during 1848-1992 the morphology of the delta was characterized by beach ridge accretion, spit growth, narrowing of inlets, and a general advance of the delta shoreline. During the past decade processes such as rapid erosion of the delta shore, narrowing of barrier islands, and breaching of a new inlet, are the result of a long-term relative sea-level rise of 2.6 mm yr−1 due to tectonically induced subsidence coupled with a eustatic rise of sea-level. The delta also experiences strong oceanographic manifestations associated with the El Niño-La Niña cycle, causing regional sea-level elevation of 20-30 cm during El Niño years. Recent coastal subsidence in the delta is evidenced by: (1) increased occurrence of non-storm washover events; (2) increased erosion of barrier islands with average loss of 11 m yr−1 during 1993-1997; and (3) a relative sea-level rise of 3.4 mm yr−1 during 1991-1999. The morphology and recent evolution of the San Juan delta are unique when compared to other deltas of South America because of the singular combination of extreme climatic, geologic, and oceanographic conditions under which the delta has formed and the absence of human-induced impact in the drainage basin.  相似文献   

6.
A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.  相似文献   

7.
Sediment supply and pre-existing shoreline morphology are crucial factors in controlling coastal changes due to sea-level rise. Using examples from both southeast and northeast Ireland, it can be shown that sea-level change may trigger a sequence of events which leads to both static and dynamic shoreline equilibrium. Cliff erosion and longshore sediment movement in east Co. Wexford has led to injection of sediment onto the shelf, and the growth, under both wave and tide regimes, of linear offshore shoals. These shoals now control the pattern of shoreline erosion and provide a template for possible stepwise evolution of the coast under any future sea-level rise. In contrast, the nearby coast of south Co. Wexford comprises a series of coarse clastic barriers moving monotonously onshore, via overwash processes. Here the behavior of the barrier is conditioned by the antecedent morphology of both the beach face and stream outlet bedforms. Finally, the rock platform coast of Co. Antrim presents a far more resistant shoreline to incident marine processes, yet even here there is strong evidence of present process control over so-called ‘raised’ platforms and embayments. It is concluded that coastal sediment supply and dynamics, together with coastal morphology and its interaction with waves, present a far more complex variety of sea-level indicators than is normally acknowledged.  相似文献   

8.
Thermoterraces in syngenetic ice complexes are widespread along the erosion dominated Yakutia Arctic coast. Thermoterraces progressively record quantitative information about their existence, which may be used to determine the mean shore retreat rate during the time they are present. Initial measurements of four thermoterraces on the south coast of the Dmitry Laptev Strait were carried out by the authors in 2002 and shore retreat rates were calculated. Comparison of erosion rates obtained using thermoterrace dimensions and geodetic survey results with those determined using aerial photographs showed that erosion rate values obtained in these two ways are approximately of the same order.  相似文献   

9.
Results from historical (1855–2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of −0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of −1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from −11.4 m/year between 1922 and 1996 to −41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated −201.5 m/year, compared with an average retreat rate of −38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.  相似文献   

10.
广西北海银滩侵蚀及其与海平面上升的关系   总被引:2,自引:0,他引:2  
黄鹄  戴志军  盛凯 《台湾海峡》2011,30(2):275-279
基于历史图件对比方法和Bruun法则对广西北海银滩岸线的侵蚀进行评估和预测.结果表明银滩在近30a内海岸侵蚀达10.40 m/a,其中人类活动作用是造成海岸侵蚀的主要因素,人类活动对岸线位置蚀退的影响贡献为98%;海平面上升导致岸线蚀退的贡献仅为2%.然而,在未来100 a内,基于历史图件对比分析估算的银滩侵蚀宽度可能超过1 000 m,银滩环境将会发生退化.因海平面上升而对岸线蚀退的贡献权重增加为9%.由于人类活动导致的银滩退化可以进行控制和预防,故对未来海平面上升引发的银滩环境退化应该予以重点关注.  相似文献   

11.
The proposed algorithm comprises three main steps. The first step is the evaluation of the sediment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline??s orientation causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3m?1 yr?1). The second step in the prediction modeling is the estimation of the potential sea-level changes during the 21st century. The third step involves modeling of the shoreline??s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010?C2050 and will increase to 0.4 m/year in 2050?C2100. The sand deficit, other than the sea-level rise, will be a key factor in the control of the shoreline??s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010?C2100.  相似文献   

12.
Ennio Cocco 《Marine Geology》1976,21(3):M49-M57
At the present time the north Ionian coast (southern Italy), which consists of low sandy beaches delimited landward by swampy areas or dune ridges, is subjected to active erosion processes averaging 4 m per year in some areas.The study of several sets of aerial photographs, dating from 1943 to 1974, shows that as from 1954 erosional processes have acted on this coast. This erosion follows a general progradation which in some zones during the last century involved a coastline displacement of hundreds of metres. The shoreline retreat is mainly related to the reduction of sediment transport following the artifical damming of the main rivers.  相似文献   

13.
1976年黄河改道从水清沟入海后,黄河三角洲前沿桩106至黄河海港岸段的海底地形遭受强烈侵蚀,岸滩不断蚀退。黄河三角洲强侵蚀岸段岸线监测资料与历史资料分析研究结果表明,1985-2004年该区最大侵蚀深度达7.5 m,其强侵蚀区中心位置经历了由西北向东南移动的过程,范围不断缩小,目前局部地区已发生淤积现象。种种迹象表明,从冲淤并存和以侵蚀为主向冲淤平衡过渡的现象还将长期进行下去。  相似文献   

14.
沙宏杰  张东  崔丹丹  吕林  倪鹏 《海洋学报》2019,41(9):170-180
淤泥质海岸冲淤变化大,岸滩剖面形态多样。本文首先根据多时相遥感水边线之间的潮差关系自动判断岸滩剖面形态,进而分别采用不同的函数进行剖面拟合,构建了一种剖面形态自适应的海岸线遥感推算新方法,并在江苏中部淤泥质海岸进行了实证应用。研究表明:下凹形侵蚀岸段、斜坡形平缓岸段和上凸形淤长岸段分别采用三指数衰减函数、线性函数和二阶多项式函数具有良好的剖面拟合效果,利用3条水边线数据拟合所得剖面平均坡度绝对误差分别为0.20‰、–0.17‰和0.13‰,小于剖面实测平均坡度一个数量级。利用5条水边线数据拟合进行海岸线推算时,侵蚀岸段、平缓岸段的海岸线平面位置误差分别为6.5 m和–91.96 m,与平均坡度法相比,误差减小约82.4%。进一步考虑岸滩季节性变化时,使用冬季的水边线数据推算海岸线,对侵蚀岸段和淤长岸段影响不大,但对斜坡形平缓岸段,误差减小约63.65%,因此使用冬季的水边线数据比不区分季节具有更高的海岸线推算精度。  相似文献   

15.
Global climate change has resulted in a gradual sea-level rise. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, thereby threatening freshwater habitat and drinking water supplies. On the other hand, sea-level rise, resulting from thermal expansion of ocean waters and increased melting of glaciers and ice caps, is one of the most apparent and widespread consequences of climate change. This phenomenon has been taken into account in all the Assessment Reports published by the Intergovernmental Panel on Climate Change (IPCC). In this paper, salinity intrusion and intrusion length due to possible sea-level rise in the Sebou estuary (Morocco) was investigated. A one-dimensional hydrodynamic-salinity transport model was used for the simulation of the salinity intrusion and associated water quality, with observed field data being used for model calibration and validation. Additionally, the model validation process showed that the model results fit the observed data fairly well. A coupled gas-cycle/climate model was used to generate the climate change scenarios in the studied area that showed sea-level rises varying from 0.3 to 0.9 m for 2100. The models were then combined to assess the impact of future sea-level rise on the salinity distribution and intrusion length in the Sebou estuary. The response of salt intrusion length to changes in important dimensional parameters are presented, showing that the salinity intrusion length is inversely correlated with the river discharge, i.e., a high river discharge results in a reduced salt intrusion and vice versa, and directly with the sea-level rise. Additionally, the magnitude and frequency of the salinity standard violations at the two pump stations were predicted for 2100, showing that the salinity violations under climate change effects can increase to ~45–48% of the times at these locations. Finally, the main objective of this simulation method is to accelerate and facilitate of systems' behavior learning in the current and future situation.  相似文献   

16.
Computer-assisted analyses of more than 600 radiocarbon-dated sea-level indicators from northwestern Europe, concentrated around the North Sea margin, indicate that vertical crustal movements are more important that eustatic sea-level change in determining the locus of Holocene shoreline positions through time. For the past 14,000 radiocarbon years, the divergence of sea-level data for the northwest European sectors exceeds the maximum estimated sea-level rise by a factor of two or more. Projecting these data to a single meridian demonstrates the remarkable variety of vertical crustal movement in northwestern Europe.Accumulating radiocarbon-dated sea-level indicators into millennial cohorts, we generate isobase maps which begin to specify areas of notable vertical crustal mobility. These isobase maps appear to confirm that eustatic sea-level rise is subordinate to postglacial geoidal excursions in determining the locus of contemporary northwestern European shorelines.  相似文献   

17.
Jan Kavan 《Marine Geodesy》2020,43(3):234-247
Abstract

Changes in the position of the shore in the vicinity of Kapp Napier in central Svalbard was described. The overall advance of the shore was probably related to high input of the sediment material originating from erosion of the coastal areas south of the Kapp Napier locality and high input of material from adjacent glacifluvial system of Nordenskiöld glacier with its marginal water streams. Fast evolution of glacier retreat related processes after the Little Ice Age was a secondary driver of the dynamic changes in the central Svalbard coastal areas especially in the first half of the 20th century. The highly dynamic longshore currents in the area altogether with still ongoing glacio-isostatic uplift played an important role in the process as well. The most active parts of the shore experienced advance of almost 100 m since 1908 to 2009. On the other hand, a small part of the coast retreated of about 20 m. Most of the study area experienced aggradation (65%), 30% of the coast was stable and about 5% of the coast has undergone minor retreat. The maximum aggradation rate of 0.96?m/year corresponds well with similar sites in the vicinity.  相似文献   

18.
The shoreline of Taiwan is approximately 1100 km long, composed of sandy beach, rocky coast, and reef coast. Almost half of the shoreline has been protected by seawalls, which play an important role for coastal protection and prevent people and infrastructure from coastal hazard. Besides, offshore breakwaters and groynes are also built in the serious erosion coastal shores. All these hard engineering structures made our coastal land safety to some extent at last fifty years. However, until now, the hard engineering structures applied for shore protection do not always work well on all the coasts around Taiwan. Some coastal areas still get eroded seriously with structures being damaged. Furthermore in the recent years, people gradually value the shore protection from different viewpoints, like environment, recreation, and ecology. The objectives of the shore protection are diversified by these new demands.Therefore, the purpose of this study is to evaluate the strategy on how to conjoint soft solutions into the current hard engineering structures for beach erosion control throughout Taiwan coast. Meanwhile, this paper will also introduce environmentally, user-oriented, and technically sound creditable protection works to meet the new trends of shore protection. For application purpose, two local sites in the southwestern Taiwan coast are selected for field experimental study to integrate the proposed soft solution with hard shore protection system at present. Furthermore for coastal management purpose, this paper also collects and analyzes hydro-morphodynamic data around Taiwan in order to identify beach erosion mechanism. Lastly, the results are presented by database and geographic information system.  相似文献   

19.
The barrier-island systems of the Mississippi River Delta plain are currently undergoing some of the highest rates of shoreline retreat in North America (~20 m/year). Effective management of this coastal area requires an understanding of the processes involved in shoreline erosion and measures that can be enacted to reduce loss. The dominant stratigraphy of the delta plain is fluvial mud (silts and clays), delivered in suspension via a series of shallow-water delta lobes that prograded across the shelf throughout the Holocene. Abandonment of a delta lobe through avulsion leads to rapid land subsidence through compaction within the muddy framework. As the deltaic headland subsides below sea level, the marine environment transgresses the bays and wetlands, reworking the available sands into transgressive barrier shorelines. This natural process is further complicated by numerous factors: (1) global sea-level rise; (2) reduced sediment load within the Mississippi River; (3) diversion of the sediment load away from the barrier shorelines to the deep shelf; (4) storm-induced erosion; and (5) human alteration of the littoral process through the construction of hardened shorelines, canals, and other activities. This suite of factors has led to the deterioration of the barrier-island systems that protect interior wetlands and human infrastructure from normal wave activity and periodic storm impact. Interior wetland loss results in an increased tidal prism and inlet cross-sectional areas, and expanding ebb-tidal deltas, which removes sand from the littoral processes through diversion and sequestration. Shoreface erosion of the deltaic headlands does not provide sufficient sand to balance the loss, resulting in thinning and dislocation of the islands. Abatement measures include replenishing lost sediment with similar material, excavated from discrete sandy deposits within the muddy delta plain. These sand bodies were deposited by the same cyclical processes that formed the barrier islands, and understanding these processes is necessary to characterize their location, extent, and resource potential. In this paper we demonstrate the dominant fluvial and marine-transgressive depositional processes that occur on the inner shelf, and identify the preservation and resource potential of fluvio-deltaic deposits for coastal management in Louisiana.  相似文献   

20.
Deposystems are complex and governed by discrete depo events with variable intervals of stasis or erosion in between. Since shoreface sediments indicate sea level, depo events of shoreline facies are discrete samples of sea level. Only if these samples are sufficiently regular and frequent will the shoreline trajectory in the space domain accurately reflect the sea-level curve in the time domain. This study presents a method to convert shoreline trajectory in the space domain to sea-level curve in the time domain from artificial miniature deltas. One obtains the depo sequence as function of time and uses it to: convert depo sequence from time-to space domain, correlate depo sequence to shoreline trajectory in the space domain, and convert shoreline trajectory from space-to time domain. For natural deltas one would extract the depo set in the frequency domain, i.e. the probability density function of stasis intervals between depo events from the experimental depo sequence and use it to: convert shoreline trajectory from space-to time domain, and infer a range of possible sea-level curves. This method therewith explicitly includes the uncertainty of the inferred sea-level curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号