首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南大别地体中榴辉岩的围岩──石榴黑云片麻岩具有角闪岩相变质矿物组合,其变质温度为525℃,Sm-Nd矿物等时线年龄为(229±3)Ma.黑云母的K-Ar封闭温度为300℃,相应K-Ar年龄为(231±5)Ma.因此该片麻岩在230Ma左右从525℃迅速冷却到300℃以下。然而该区榴辉岩在印支期(221Ma)变质温度为700℃左右,直到134Ma才降至400-450℃。说明该区榴辉岩与该片麻岩具有不同的冷却史。它不支持榴辉岩是原地(in situ)成因的。  相似文献   

2.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

3.
The metamorphic evolution of rocks cropping out near Stoer, within the Assynt terrane of the central region of the mainland Lewisian complex of NW Scotland, is investigated using phase equilibria modelling in the NCKFMASHTO and MnNCKFMASHTO model systems. The focus is on the Cnoc an t’Sidhean suite, garnet‐bearing biotite‐rich rocks (brown gneiss) with rare layers of white mica gneiss, which have been interpreted as sedimentary in origin. The results show that these rocks are polymetamorphic and experienced granulite facies peak metamorphism (Badcallian) followed by retrograde fluid‐driven metamorphism (Inverian) under amphibolite facies conditions. The brown gneisses are inferred to have contained an essentially anhydrous granulite facies peak metamorphic assemblage of garnet, quartz, plagioclase and ilmenite (±rutile, K‐feldspar and pyroxene) with biotite, hornblende, muscovite, chlorite and/or epidote as hydrous retrograde minerals. P–T constraints imposed by phase equilibria modelling imply conditions of 13–16 kbar at >900 °C for the Badcallian granulite facies metamorphic peak, consistent with the field evidence for partial melting in most lithologies. The white mica gneiss comprises a muscovite‐dominated matrix containing porphyroblasts of staurolite, corundum, kyanite and rare garnet. Previous studies have suggested that staurolite, corundum, kyanite and muscovite all grew at the granulite facies peak, with partial melting and melt loss producing a highly aluminous residue. However, at the inferred peak P–T conditions, staurolite and muscovite are not predicted to be stable, suggesting they are retrograde phases that grew during amphibolite facies retrograde metamorphism. The large proportion of mica suggests extensive H2O‐rich fluid‐influx, consistent with the retrograde growth of hornblende, biotite, epidote and chlorite in the brown gneisses. P–T conditions of 5.0–6.5 kbar at 520–550 °C are derived for the Inverian event. In situ dating of zircon from samples of the white mica gneiss yield apparent ages that are difficult to interpret. However, the data are permissive of granulite facies (Badcallian) metamorphism having occurred at c. 2.7–2.8 Ga with subsequent fluid driven (Inverian) retrogression at c. 2.5–2.6 Ga, consistent with previous interpretations.  相似文献   

4.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

5.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

6.
Granulite-Facies Metamorphism at Molodezhnaya Station, East Antarctica   总被引:1,自引:0,他引:1  
Granulite-facies quartzofeldpathic gneisses metamorphosed 1000m.y. ago are exposed around Molodezhnaya Station (67°40'S,46°E) in East Antarctica. In addition to quartz, K-feldspar,and plagioclase, the fourteen samples studied in detail consistof the assemblages biotite-orthopyroxene-magnetite, biotite-garnet-orthopyroxene-ilmenite±magnetite, biotite-garnet ± ilmenite ± magnetite,biotite-garnet-sillimanite-ilmenite ± rutile, and biotite-garnet-cordierite-ilmenite-(sillimanite-rutile).Garnets are pyrope-almandine (13 to 34 mol per cent pyrope).Biotite (XFe = 0.33 to 0.57) is rich in TiO2 (4 to 6.3 wt percent) and its Al2O3 content depends on the mineral assemblage.Orthopyroxene (XFe = 0.45 to 0.60) contains 1.5 to 3.0 weightper cent Al2O3. By and large, the minerals are chemically homogeneousand compositional variations are systematic, which indicatecrystallization under equilibrium conditions. On the basis ofthe compositions of coexisting garnet-biotite, garnet-cordierite,garnet-plagioclase (with sillimanite), and garnet-plagioclase-orthopyroxene,temperatures and pressures during the granulite-facies metamorphismare estimated to be 700°C ± 30°C and 5.5 ±1 kb. Water pressure apparently was significantly less thantotal pressure. Alteration during events following the granulite-facies metamorphismhas resulted in chemical zoning in garnet, in which grain edgesare more iron-rich than cores, heterogeneous biotite compositions,and anomalous trends involving MnO. Temperatures based on biotiteand garnet-edge compositions range from 410 to 580°C. Differences in the chemical potential (µ) of water andoxygen in the fluid phase can explain compositional variationsamong the three sillimanite-bearing samples and the relativelyiron-rich compositions of garnet and biotite associated withcordierite. Apparently, the water released by the formationof cordierite remained in the rock, forcing µH2O to increaseas cordierite formed. Buffering of fluid phase composition bythe mineral assemblage suggests that water was not removed fromthe Molodezhnaya rocks by flushing with CO2-rich fluids duringmetamorphism, a hypothesis evoked to explain ‘dry’mineral assemblages in other granulite-facies terrains.  相似文献   

7.
The alkali-feldspar and biotite in the sillimanite-biotite-garnet gneiss from East Antarctica preserves characteristic microstructural evidence of multi-stage H2O supplement during the retrograde metamorphism. The first microstructural evidence is the “zoned feldspar,” in which the mesoperthitic zone, the anti-perthitic zone, and lamella-free plagioclase zone coexist within a single crystal. They are occasionally found next to biotite, and are always depleted in orthoclase (Or) component toward the biotite. The formation process of this microstructure could be explained by the diffusion that oversteps the solvus. The second microstructural evidence is the serrate boundary between alkali-feldspar and biotite. The projections of biotite are selectively developed next to Or lamellae of alkali-feldspar every 3–5 μm. These two microstructures would have formed as the biotite grew by consuming potash in alkali-feldspar when H2O-bearing fluid locally passed through the grain boundaries. The former microstructure was formed at 825–900 °C before lamella formation, and the latter microstructure was formed after the lamella formation. These microstructures are the indicators of fluid pathways formed under two different temperature conditions. The common coexistence of these microstructures implies that the fluid used similar pathways during the retrograde metamorphism.  相似文献   

8.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

9.
Summary The Haiyangsuo Complex in the NE Sulu ultrahigh-pressure (UHP) terrane has discontinuous, coastal exposures of Late Archean gneiss with amphibolitized granulite, amphibolite, Paleoproterozoic metagabbroic intrusives, and Cretaceous granitic dikes over an area of about 15 km2. The U–Pb SHRIMP dating of zircons indicates that theprotolith age of a garnet-biotite gneiss is >2500 Ma, whereas the granulite-facie metamorphism occurred at around 1800 Ma. A gabbroic intrusion was dated at ∼1730 Ma, and the formation of amphibolite-facies assemblages in both metagabbro and granulite occurred at ∼340–460 Ma. Petrologic and geochronological data indicate that these various rocks show no evidence of Triassic eclogite-facies metamorphism and Neoproterozoic protolith ages that are characteristics of Sulu-Dabie HP-UHP rocks, except Neoproterozoic inherited ages from post-collisional Jurassic granitic dikes. Haiyangsuo retrograde granulites with amphibolite-facies assemblages within the gneiss preserve relict garnet formed during granulite-facies metamorphism at ∼1.85 Ga. The Paleoproterozoic metamorphic events are almost coeval with gabbroic intrusions. The granulite-bearing gneiss unit and gabbro-dominated unit of the Haiyangsuo Complex were intruded by thin granitic dikes at about 160 Ma, which is coeval with post-collisional granitic intrusions in the Sulu terrane. We suggest that the Haiyangsuo Complex may represent a fragment of the Jiao-Liao-Ji Paleoproterozoic terrane developed at the eastern margin of the Sino-Korean basement, which was juxtaposed with the Sulu terrane prior to Jurassic granitic activity and regional deformation.  相似文献   

10.
The Vaikrita Group made up of coarse mica-garnet-kyanite and sillimanite-bearing psammitic metamorphics constituting the bulk of the Great Himalaya in Kumaun is divisible into four formations, namely theJoshimath comprising streaky, banded psammitic gneisses and schists, the Pandukeshwar consisting predominantly of quartzite with intercalations of schists, thePindari made up of gneisses and schists with lenses of calc-silicate rocks and overwhelmingly injected by Tertiary pegmatites and granites (Badrinath Granite) leading to development of migmatites, and theBudhi Schist comprising biotite-rich calc-schists. The Vaikrita has been thrust along the Main Central Thrust over the Lesser Himalayan Munsiari Formation made up of highly mylonitized low-to meso-grade metamorphics, augen gneisses and phyllonites. Petrological studies demonstrate contrasting nature of metamorphism experienced by the Vaikrita and the Munsiari rocks. Sillimanite-kyanite-garnet-biotite-muscovite (±K-feldspar and ± plagioclase).—quartz metapelites and interbanded calc-schists and calc-gneisses with mineral assemblages of calcite-hornblende-grossular garnet, labradorite (An50?An65), (± K-feldspar)-quartz (± biotite), and hornblende-diopside ± labradorite ± quartz, suggest medium to high grade of metamorphism or indicate upper amphibolite facies experienced by the rocks of the Vaikrita Group. The associated migmatites, granite-gneisses and granites of the Pindari Formation were formed largely as a result of anatexis of metapelites and metapsammites. While, the sericite-chlorite-quartz and muscovite-chlorite-chloritoid-garnet-quartz, assemblages in metapelites and epidote-actinolite-oligoclase (An20)-quartz and epidote-hornblende-andesine (An29) ± quartz in the metabasites suggest a low-grade metamorphism (greenschist facies) for the Munsiari Formation, locally attaining the lower limit of medium-grade (epidote-amphibolite) facies. The inferred P-T conditions obtained from textural relations of various mineral phases and the stability relationship of different coexisting phases in equilibrium, suggest that the temperature ranged between 600° and 650° C and pressure was over 5 kb for the Vaikrita rocks. The mineral assemblages of the Munsiari Formation indicate comparatively lower P-T conditions, where the temperature reached approximately 450° C and pressure was near 4 kb. The rocks of the two groups were later subjected to intense shearing, cataclasis and attendant retrograde metamorphism within the zone of the Main Central (=Vaikrita) Thrust.  相似文献   

11.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

12.
The Marymia gold deposit, comprising two orebodies, Keillor 1 and Keillor 2, is at the northern end of the Plutonic Well greenstone belt in the Marymia Inlier, in the southern Capricorn Orogen, just north of the Yilgarn craton. The Marymia Inlier is a discrete fault-bounded Archean gneiss-granitoid-greenstone domain surrounded by sedimentary basins that were formed and variably metamorphosed and deformed during several Palaeoproterozoic orogenic cycles. The greenstone sequence at Marymia is stratigraphically and geochemically similar to greenstone sequences in the Yilgarn craton, but was subjected to further deformation and metamorphism in the Palaeoproterozoic. Late Archean deformation (D1-D2) was ductile to brittle-ductile in style, whereas Palaeoproterozoic deformation was predominantly brittle. Equilibrium mineral assemblages indicate that peak amphibolite-facies metamorphism (540-575 °C, <3 kb) was overprinted by greenschist-facies metamorphism (300-360 °C). Petrographic textures indicate that prograde metamorphism was coeval with D1-D2, with peak metamorphism early to syn D2. Gold mineralisation at Marymia is hosted in metamorphosed tholeiitic basalts and banded iron formation. On a gross scale, the distribution of gold is controlled by D2 folds and shear zones. Lithological contacts with strong rheological or chemical contrasts provide local controls. Gold-related alteration comprises subtle millimetre- to centimetre-wide zones of silicification with variable amounts of quartz, hornblende, biotite, K-feldspar, plagioclase, calcite/siderite, scheelite, titanite, epidote, sulfide and telluride minerals. Quartz veins are generally narrow and discontinuous with low total volume of quartz. Gold is sited in the wall rock, at vein salvedges or within stringers of wall rock within veins. There are two distinct opaque-mineral assemblages: pyrite-pyrrhotite-chalcopyrite-galena and hessite-petzite-altaite-Bi-telluride-galena. Ore samples are variably enriched in Ag, Te, Pb, W, Cu, S and Fe reflecting heterogeneity of the ore mineralogy. Structural timing and temperature of formation of alteration and ore minerals support deposition of gold during late peak amphibolite-facies metamorphism from neutral to alkaline (pH=5-6), moderately oxidising (log PO2,-21-22) and CO2-bearing (XCO2 Ƹ.2) fluids. The total sulfur content of the fluid is estimated at 1mDS. Lead isotope compositions support derivation of lead from within the local greenstone sequence. Gold lodes were deformed by faults and shear zones in the Palaeoproterozoic, with only limited remobilisation. Subeconomic, carbonate vein- and breccia-hosted base metal mineralisation is locally hosted within Palaeoproterozoic fault zones, which clearly cut gold lodes. Base-metal-related alteration is characterised by intense carbonatisation, chloritisation, and albitisation of the mafic host rocks. Mineral assemblages are consistent with formation at greenschist facies conditions. Lead isotope compositions support crystallisation at ca. 1.7 Ga from lead that is similar in composition to earlier gold-related galena.  相似文献   

13.
Thin strips of calc-silicate gneiss occurring within the Moinianpelites of Fannich Forest were analysed and examined petrologically.They usually consist of zoisite, plagioclase, quartz, calcicalmandine, and hornblende or biotite, and although rich in calcium,are depleted in magnesium and potassium. In some of the rocksstudied, biotite is replacing hornblende, and zoisite is replacingplagioclase, and the timing of these reactions, and the finalstate of equilibrium achieved, is apparently controlled by boththe CaO/Al2O2 ratio in the rock, and the metamorphic grade.The reactions observed in the calc-silicates indicate that thefinal metamorphic event in Fannich was retrogressive. Comparisonwith calc-silicates from Morar showing similar retrogressivereactions hints that a widespread retrogressive metamorphicevent may have affected a large area of the Moinian of westernScotland.  相似文献   

14.
Garnet-biotite (-cordierite) phase relations in high-grade gneisses of the south coast of Western Australia reflect at least two metamorphic episodes. Chemical uniformity of the interiors of garnet and cordierite grains suggest thorough equilibration during a major phase of metamorphism. Narrow Mg-depleted rims on garnet grain boundaries in contact with biotite or cordierite, and complementary Mg-enriched rims on contiguous cordierites are the result of subsequent retrograde re-equilibration. The absence of reaction zoning in biotites suggests more complete retrograde modification of this mineral.Comparison between granulite and amphibolite facies garnet-biotite pairs shows that Mn contents of both minerals are higher, and Ti contents of the biotites are lower, in the lower-grade rocks. These differences, although not entirely unrelated to grade, are more directly controlled by variations in host rock chemistry and modal amounts of garnet and biotite.Partitioning of Mg, Fe2+ and Mn between garnet and biotite is fairly uniform, with no clear differences between granulite and amphibolite facies pairs. Application of the Mg-Fe2+ distributions to the geothermometers devised by Perchuk, Thompson, and Goldman & Albee yields variable T estimates of 600–680°C, 580–780°C, and 475–715°C respectively, for the main metamorphism. These estimates are low compared with the T indicated for the granulite facies rocks by other evidence (i.e. > 750°C at 5 kb PT). The Mg-Fe2+ distributions between contiguous garnet-biotite rims suggest that retrograde re-equilibration occurred at least 20–140°C below the T of the main metamorphism.  相似文献   

15.
Biotite and hornblende from a portion of the Blue Ridge Precambrian basement terrane that was progressively retrograded during Paleozoic metamorphism have been analyzed by the 40Ar39Ar dating technique to determine if incremental release spectra can distinguish thermally altered samples. Where not severely overprinted by Paleozoic metamorphism, both minerals show generally undisturbed age spectra with plateau ages similar to those of hornblende and biotite from non-retrograded portions of the Grenville terrane elsewhere in the Appalachians (hornblende ~1000 m.y.; biotite ~ 790 m.y.). The age spectra show a progressive disturbance which is correlated with increasing intensity of Paleozoic metamorphism. Modification of the hornblende spectra is that expected of diffusive argon loss during geologic reheating (incremental ages become older from low to high release temperatures). Disturbed biotite spectra do not show this type of modification, but develop increasingly broader low-age ‘saddles’ with increasing retrograde intensity. Eventually, Paleozoic metamorphism effected total retrograde alteration of the Grenville minerals and new generations of chemically distinct biotite and hornblende occur. Release spectra of these phases generally define plateaus although they are of different ages (biotite ~310–340 m.y.; hornblende ~355–460 m.y.). This discordancy is similar to that reported for other recrystallized portions of the Appalachian Grenville terrane and suggests that the ages represent times of argon retention following a 480 m.y. Paleozoic metamorphism.The data suggest that 40Ar39Ar age spectra can distinguish thermally altered samples.  相似文献   

16.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

17.
A sequence of at least three Al2SiO5-bearing mineral assemblages are preserved in successively overprinted ductile shear zones in the Willimantic window, Connecticut. The ductile deformation, localized at and near the boundary between the Putnam-Nashoba terrane and underlying Avalon terrane is characterized by a network of anastomozing shear zones that outline metre-scale tectonic blocks of migmatitic Kfs + Sil + Gt + Bi + Pg + Qtz + Ilm + Ru gneiss. These assemblages record Acadian or older metamorphic conditions of 6 kbar, 700d? C. Mylonitic gneisses in shear zones that define block margins were formed by reconstitution and recrystallization of the migmatitic gneiss. The reconstituted rocks exhibit relict Ky + St + Grt (+Pl + Bt + Qtz + Rt + Ilm) assemblages and require a minimum pressure for the Ky-Str grade metamorphism of 8.5 kbar. Kyanite in block margins is widely replaced by sillimanite, and locally by andalusite, during a period of post-Alleghanian ductile deformation. The interiors of blocks do not record this sequence of polymorphs. The pattern of reconstitution is accounted for by localization of strain along block margins within a regionally extensive terrane-bounding fault zone. Strain provided the activation energy for recrystallization and retrograde mineral reactions. The P-T conditions of post-Alleghanian ductile deformation evolved from 600d? C and 6 kbar to 550d? C and 3 kbar. The occurrence of Ky + Str-bearing assemblages, overprinting Acadian Kfs + Sil-bearing assemblages and subsequently overprinted by Alleghanian sillimanite- and andalusite-bearing assemblages, along with reset hornblende 40Ar/39 Ar mineral ages from Mississippian to Permian, requires a prograde Alleghanian metamorphism of rocks previously metamorphosed during the Acadian. Thus, mineral assemblages from gneisses in the Willimantic fault zone retain evidence of a protracted tectonothermal evolution that included high-grade Acadian orogenesis, tectonic loading resulting from Alleghanian collision of Avalon with North America, and tectonic exhumation in Permo-Triassic time. The c.3-kbar pressure decrease between prograde and retrograde Alleghanian metamorphic conditions corresponds to 10 km of crust that must have been tectonically excised from the base of the Putnam-Nashoba terrane cover sequence following Alleghanian orogenesis in south-eastern New England.  相似文献   

18.
周文孝  葛梦春 《地球科学》2013,38(4):715-724
通过大比例尺填图和剖面研究, 将内蒙古锡林浩特地区的"锡林郭勒杂岩"解体分为3大部分: 一套表壳岩、晚元古代基性-超基性侵入岩和早古生代酸性侵入岩.在此基础上根据变质岩的岩性组合和变形变质特点, 可将其中的表壳岩化分为4个岩性段: 黑云(石榴石)斜长片麻岩, 间夹多层条纹状斜长角闪岩, 在其顶部多见薄层含磁铁石英岩; 中粗粒黑云斜长片麻岩和细粒长英质片麻岩; 混合岩化条带状黑云(角闪)斜长片麻岩, 含石榴石黑云二长片麻岩夹条纹状斜长角闪岩组合; 夕线石黑云斜长片麻岩, 条纹状黑云斜长片麻岩, 间夹含石榴石黑云母石英片岩.通过对比区域内宝音图群、艾勒格庙组、白乃庙群等古老地块的岩石组合, 发现在原岩建造、变质级别、沉积环境等特征上均有区别, 应将这套表壳岩单独厘定为锡林浩特岩群, 它们组成了锡林郭勒微陆块前寒武变质基底岩系, 其地质特征的研究对锡林郭勒微陆块基底的形成和演化及华北板块与西伯利亚板块的构造关系演化有重要意义.   相似文献   

19.
对采自十八顷毫金矿区的黑云母、角闪石用阶段升温法进行40Ar/39Ar年龄谱研究,结合矿区地质特征,认为黑云母近似直线年龄谱的坪年龄(277Ma)及角闪石稳定坪年龄(288Ma)代表了韧性剪切带最新活动的时代;角闪石矿物年龄谱反映的后期热扰动(268Ma)反映区域退化变质作用发生的时代,269~277Ma的年龄可能代表了与退化变质同时的金矿化时代。  相似文献   

20.
长期以来,陇山杂岩的归属问题一直存在争议。本文对出露于秦岭-祁连山结合部位的陇山杂岩中石榴黑云斜长片麻岩和石榴斜长角闪岩进行了详细的岩石学、P-T温压计算、独居石和榍石U-Pb年代学研究。通过详细的岩相学观察,石榴黑云斜长片麻岩的变质峰期矿物组合为石榴子石+黑云母+斜长石+石英;石榴斜长角闪岩中则识别出了以石榴子石+单斜辉石+角闪石+斜长石+石英为峰期的变质矿物组合。通过传统温压计计算,石榴黑云斜长片麻岩(样品21LS40)和石榴斜长角闪岩样品(样品21LS42-1)的峰期变质P-T条件分别为700℃、0.72GPa和710℃、0.74GPa。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS) U-Pb数据表明,石榴黑云斜长片麻岩中独居石的206Pb/238U的加权平均年龄为407~435Ma。石榴斜长角闪岩中榍石的下交点年龄分别为410±7Ma、409±5Ma和426±10Ma,榍石中Zr含量温度计的计算结果分别为750℃、751℃和748℃(假定压力为0.7GPa)。本文从变质作用的角度出发,将陇山杂岩与秦岭杂岩进行温压条件和变质时代对比研究,认为陇山杂岩与东秦岭杂岩高压-超高压岩石的最后一期退变质作用和西秦岭天水地区的秦岭杂岩麻粒岩相变质作用类似,可能为北秦岭造山带的西延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号