首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Results of different isotopic and trace element studies on three carbonatite–alkaline complexes (Amba Dongar, Mundwara and Sarnu-Dandali) of the Deccan flood basalt province, India, are presented. The Amba Dongar (Ambadungar) complex has been dated precisely to 65.0±0.3 Ma by the 40Ar–39Ar method. The minimum initial Sr isotopic ratio of alkaline rocks of Amba Dongar is found to be same as that of the coexisting carbonatites, suggesting their derivation from a common parent magma, probably through liquid immiscibility. The rare earth element abundance in these rocks also supports the liquid immiscibility hypothesis. Further investigation revealed that the parent magma of this complex has been contaminated (∼5%) by the lower crustal material, which is clearly reflected in the initial 87Sr/86Sr variation of alkaline rocks but not in the carbonatites. Sr study also suggests that the mantle source of Amba Dongar like the other two complexes is a Rb/Sr enriched source. The temporal and spatial relationships of all the three complexes with the Deccan flood basalts support the hypothesis of reunion plume origin for these. Fractional crystallization and subsequent hydrothermal/meteoric alteration are found to have controlled the stable carbon and oxygen isotopic variations in carbonatites. This study suggests that all the complexes have been derived from isotopically average mantle except for a particular batch of parent magma at Amba Dongar, which appears to have incorporated recycled crustal carbon. In a plume origin scenario such incorporation indicates the entrainment of 13C-enriched subcontinental lithospheric mantle by the plume.  相似文献   

2.
Carbonatites are believed to have crystallized either from mantle-derived primary carbonate magmas or from secondary melts derived from carbonated silicate magmas through liquid immiscibility or from residual melts of fractional crystallization of silicate magmas. Although the observed coexistence of carbonatites and alkaline silicate rocks in most complexes, their coeval emplacement in many, and overlapping initial87Sr/86Sr and143Nd/144Nd ratios are supportive of their cogenesis; there have been few efforts to devise a quantitative method to identify the magmatic processes. In the present study we have made an attempt to accomplish this by modeling the trace element contents of carbonatites and coeval alkaline silicate rocks of Amba Dongar complex, India. Trace element data suggest that the carbonatites and alkaline silicate rocks of this complex are products of fractional crystallization of two separate parental melts. Using the available silicate melt-carbonate melt partition coefficients for various trace elements, and the observed data from carbonatites, we have tried to simulate trace element distribution pattern for the parental silicate melt. The results of the modeling not only support the hypothesis of silicate-carbonate melt immiscibility for the evolution of Amba Dongar but also establish a procedure to test the above hypothesis in such complexes.  相似文献   

3.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

4.
The Siriwasan carbonatite-sill along with associated alkaline rocks and fenites is located about 10 km north of the well-known Amba Dongar carbonatite-alkaline rocks diatreme, in the Chhota Udaipur carbonatite-alkaline province. Carbonatite has intruded as a sill into the Bagh sandstone and overlying Deccan basalt. This resulted in the formation of carbonatite breccia with enclosed fragments of basement metamorphics, sandstone and fenites in the matrix of ankeritic carbonatite. The most significant are the plugs of sövite with varied mineralogy that include pyroxene, amphibole, apatite, pyrochlore, perovskite and sphene. REE in sövites is related to the content of pyrochlore, perovskite and apatite. The carbon and oxygen isotopic compositions of some sövite samples and an ankeritic carbonatite plot in the “mantle box” pointing to their mantle origin. However, there is also evidence for mixing of the erupting carbonatite magma with the overlying Bagh limestone. The carbonatites of Siriwasan and Amba Dongar have the same Sr and Nd isotopic ratios and radiometric age, suggesting the same magma source. On the basis of available chemical analyses this paper is aimed to give some details of the Siriwasan carbonatites. The carbonatite complex has good potential for an economic mineral deposit but this is the most neglected carbonatite of the Chhota Udaipur province.  相似文献   

5.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

6.
In most alkaline-ultrabasic-carbonatite ring complexes, the distribution of trace elements in the successive derivatives of mantle magmas is usually controlled by the Rayleigh equation of fractional crystallization in accordance with their partition coefficients, whereas, that of late derivatives, nepheline syenites and carbonatites, is usually consistent with trends characteristic of silicate-carbonate liquid immiscibility. In contrast to the carbonatites of ring complexes, carbonatites from deep-seated linear zones have no genetic relation with alkaline-ultrabasic magmatism, and the associated alkaline rocks are represented only by the nepheline syenite eutectic association. The geochemical study of magmatic rocks from the Vishnevye Gory nepheline syenite-carbonatite complex (Urals), which is assigned to the association of deep-seated linear zones, showed that neither differentiation of a parental melt nor liquid immiscibility could produce the observed trace element distribution (Sr, Rb, REE, and Nb) in miaskites and carbonatites. Judging from the available fragmentary experimental data, the distribution patterns can be regarded as possible indicators of element fractionation between alkaline carbonate fluid and alkaline melt. Such trace element distribution is presumably controlled by a fluid-melt interaction; it was also observed in carbonatites and alkaline rocks of some ring complexes, and its scarcity can be explained by the lower density of aqueous fluid released from magma at shallower depths.  相似文献   

7.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

8.
The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm–143Nd, 207Pb–206Pb and 40Ar–39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr–Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb–206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261–273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite–magnesite–ankerite–Cr-rich magnetite–magnesio-arfvedsonite–pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite melt and that it was derived from a carbonate bearing mantle. The Sr–Nd isotopic data suggest that the primary magma originated from a metasomatized lithospheric mantle. Trace element modelling confirms such an inference and suggests that the source was a phlogopite bearing mantle, located within the garnet stability zone.  相似文献   

9.
《Gondwana Research》2000,3(1):39-53
Alkaline magmatism during the late Proterozoic is an important event in the northern part of the South Indian granulite terrain. A number of alkaline plutons comprising saturated syenite and ultramafic rocks often associated with carbonatite are found localized along NEHYPHEN;SW trending lineaments, which are considered as deep crustal fractures. Along one such lineament, the alkaline complexes of Yelagiri, Sevattur and Samalpatti have intruded into the country rocks comprising epidote hornblende gneiss. The isotope characteristics and geochemistry of Yelagiri and Sevattur plutons are examined in this paper. Whole rock Rbhyphen;Sr isochron ages of the Yelagiri and Sevattur syenites are 757±32 Ma and 756±11 Ma respectively. The close spatial relationship, similarities in age, mineralogical and geochemical characteristics of these plutons strongly suggest their close genetic relationship. The initial Sr and Nd isotope ratios of the Sevattur carbonatites suggest their derivation from an alkali metal and LREE enriched mantle source. However, the silicate rocks of the Yelagiri and Sevattur plutons have distinctly different isotopic characteristics from this enriched mantle source. Combined geochemical and isotopic characteristics of these silicate rocks indicate that silicate rocks of both plutons are derived independently from isotopically different sources from those of carbonatites. Moreover, comparison with the isotopic characteristics of Archean crustal rocks in South India indicates that the source regions of both silicate rocks are lowerhyphen;crustal portions, which are deeper than any other crustal portion exposed in South India, or isotopically metasomatized crustal portions by volatile influx from carbonatite.  相似文献   

10.
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr?=?0.70661–0.70754 and 143Nd/144Nd?=?0.51169–0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.  相似文献   

11.
Summary The Ambadungar (Amba Dongar) alkaline carbonatite complex is emplaced in the Deccan traps igneous province. A wide range of carbonatites and alkaline rocks are exposed around Ambadungar. The alkaline rocks have been classified as tinguaite, phonolite and/or phononephelinite, melanephelinite, and syenite and/or nepheline syenite whereas carbonatites vary from calcio-carbonatites to ferro- and silicocarbonatites. The enrichment in large-ion lithophile elements (LILE), P, and rare-earth elements (REE) in carbonatites is considered to result from fractionation of a mantle derived magmatic liquid, i.e. nephelinitic magma, by liquid immiscibility which also produced melanephelinite and/or phononephelinite with high field strength elements (HFSE) such as Ca, Mg, Fe, and Mn in the alkaline silicate liquid fraction. The La:Lu ratios of the carbonatites are typical of igneous rocks and vary between 590 and 1945, similar to many known magmatic carbonatites. The 13C concentration varies between –2 and –8 whereas 18O-values vary between 7.7 and 26.8. The 13C concentration is typical of primary igneous carbonatites but 18O enrichment is thought to be the result of post-magmatic processes such as interaction with meteoric water and re-equilibration with hydrous fluids at low temperatures.
Petrologie, Geochemie und Genese der riftgebundenen Karbonatite von Ambadungar, Indien
Zusammenfassung Der Ambadungar (Amba Dongar) Alkalikarbonatit-Komplex liegt in der magmatischen Deccan Provinz. Er umfaßt eine Vielzahl von karbonatitischen und alkalischen Gesteinen, die in der Umgebung von Ambadungar aufgeschlossen sind. Die Alkaligesteine sind als Tinguaite, Phonolite und/oder Phononephelinite, Melanephelinite, Syenite und/oder Nephelinsyenite zu klassifizieren, die Karbonatite als Calcio-, bis Ferro- and Silicokarbonatite. Die Anreicherung an LIL-Elementen und Seltenen Erden in den Karbonatiten werden als das Ergebnis der Fraktionierung von Mantelschmelzen, i.e. eines nephelinitisches Magmas, infolge von Nichtmischbarkeit interpretiert. Melanephelinite und/oder Phononephelinite and hohe Gehalte an HFS-Elementen (Ca, Mg, Fe and Mn) in der alkalisch-silikatischen Schmelzfraktion sind ebenfalls das Ergebnis dieser Prozesse. Die La/Lu-Verhältnisse sind typisch für magmatische Karbonatite and variieren zwischen 590 and 1945. Die 13C Konzentrationen variieren zwischen -2 and -8 %o, die 18O Werte zwischen 7.7 and 26.8 %0. Während die 13C Konzentration typisch für primär magmatische Karbonatite ist, ist die 18O-Anreicherung mit postmagmatischen Prozessen, wie etwa die Interaktion mit meteorischen Wässern and die Reequilibration mit niedrig temperierten wäßrigen Fluiden, erklärbar.


with 11 figures  相似文献   

12.
Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton formed in the Middle Cambrian (509 ± 10 Ma). The silicate igneous rocks correspond in the contents of silica, alumina, and alkalies to derivates of a K–Na alkaline basic association. The Ca-carbonatites are characterized by a high-temperature (600–900 °C) paragenesis of apatite, clinopyroxene, ferromonticellite, phlogopite, and magnetite. They are enriched in P2O5 (up to 6.4 wt.%), Sr (up to 3000–4500 ppm; Sr/Ba ~ 5–7), and REE + Y (up to 800 ppm) and show evidence for liquation genesis. The predominant magmatic source (εNd(T) = 5–7) was moderately depleted PREMA, possibly combined with E-MORB and EM. According to the isotopic data ((87Sr/86Sr)T ~ 0.7024–0.7065; δ18O ~ 6.3–15.5‰; δ18C ~ –3.5 to –2.0‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the mafic rocks testifies to the participation of a substance similar to the substrata of the parental magmas of MORB, IAB, and OIB in the magma generation. This suggests intrusion in the geodynamic setting of interaction between the active continental margin and an ascending mantle diapir. Most likely, the intrusion led to the mixing of material from different sources, including the components of PREMA, enriched suprasubduction lithospheric mantle (EM), and continental crust. The assumption is made that the complexes of highly alkaline rocks and carbonatites in the western Central Asian Fold Belt are of plume origin and belong to an Early Paleozoic large igneous province.  相似文献   

13.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

14.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   

15.
The alkaline intrusion of Grønnedal-ka (South Greenland) is the oldest of the ten major rift-related plutonic complexes of southern Greenland that intruded during the Gardar period between 1330 and 1150 Ma into the 2.6-Ga-old gneisses and metasediments of the Ketilidian basement. The Grønnedal-ka alkaline intrusion consists of carbonatites, silicocarbonatites, transitional carbonatites and nepheline-bearing syenites. The silicocarbonatites exhibit locally ocellar textures that are typical for immiscibility processes. A 87Sr/86Sr initial ratio of about 0.703184 major and trace element compositions—including REE and C-, and O-isotope data from 15 carbonatite, 12 silicocarbonatite, 10 transitional carbonatite and 8 syenite and samples—provide evidence for minor crustal contamination of the mantle-derived magma that generated by unmixing carbonatites, silicocarbonatites and syenites. A scatter in major and trace element contents and isotope ratios is related to late- to post-magmatic alteration processes. The Grønnedal-ka silicocarbonatites are one of the rather rare cases in which unmixing of a highly alkaline mantle-derived magma into an alkalisilicate and a carbonatitic magma-fraction under plutonic conditions is well documented by textural and geochemical data.  相似文献   

16.
Summary The eastern part of the agpaitic Khibina complex is characterized by the occurrence of dykes of various alkali silicate rocks and carbonatites. Of these, picrite, monchiquite, nephelinite and phonolite have been studied here. Whole rock and mineral geochemical data indicate that monchiquites evolved from a picritic primary magma by olivine+ magnetite fractionation and subsequent steps involving magma mixing at crustal levels. None of these processes or assimilation/magma mixing of wall rocks or other plutonic rocks within the complex can entirely explain the geochemical and Nd–Sr-isotopic characteristics of the monchiquites (i.e. a covariant alignment between (87Sr/86Sr)370=0.70367, (143Nd/144Nd)370=0.51237 and (87Sr/86Sr)370=0.70400, (143Nd/144Nd)370=0.51225 representing the end points of the array). This signature points to isotopic heterogeneities of the mantle source of the dyke-producing magma. The four mantle components (i.e. depleted mantle, lower mantle plume component, EMI-like component and EMII-like component) must occur in different proportions on a small scale in order to explain the isotopic variations of the dyke rocks. The EMII-like component might be incorporated into the source area of the primary magma by carbonatitic fluids involving subducted crustal material. The most likely model to explain the small-scale isotopic heterogeneity is plume activity. The results of this study do not provide any support to a cogenetic origin (e.g. fractionation or liquid immiscibility) for carbonatite and monchiquite or other alkali-silicate dyke rocks occurring in spatial proximity. Instead, we propose that both, carbonatite and picrite/monchiquite, originated by low-degree partial melting of peridotite. Textural observations, mineralogical data, and C and O isotopic compositions suggest incorporation of calcite from carbonatite in monchiquite and the occurrence of late-stage carbothermal fluids.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-003-0016-2  相似文献   

17.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

18.
K-A ages from a variety of alkaline rocks, carbonatites (sövites) and alnöites from the Alnö complex range between 370 and 605 m.y. but the most meaningful ages concentrate between 546 and 578 m.y. Most nephelinites, phonolites and alkali trachytes that occur in a dike complex surrounding the main intrusion give a middle Cambrian RbSr whole-rock isochron age of 553±6 m.y. (2σ). Some samples (deleted from the age regression) were contaminated by radiogenic strontium. Plutonic pyroxenites, ijolites and nepheline syenites that form most of the core of the intrusion formed at about the same time and from the same parental magma as the dike rocks. Sövites and alnöites that crosscut the dike and core rocks did not intrude significantly later and may have formed from the same parent magma or mantle source. Many samples show evidence of either mixing or isotopic exchange of the magma with the country rocks during intrusion (fenitisation?) or open system behavior after crystallization. These processes resulted in some scatter of the data points about the best-fit RbSr isochron lines and in some anomalous K-A ages. Fenites have higher Rb/Sr and 87Sr/86Sr ratios than the alkaline rocks, making it unlikely that the latter were the remobilized products of extreme fenitization, as suggested by von Eckermann (1948). The Alnö intrusion is about the same age as the Fen complex of southern Norway, but is significantly older or younger than many other apparently similar intrusions in Scandinavia.  相似文献   

19.
SIMONETTI  A.; BELL  K. 《Journal of Petrology》1994,35(6):1597-1621
Initial Nd, Pb, and Sr isotopic data from carbonatites and associatedintrusive silica-undersaturated rocks from the early Jurassic,Chilwa Island complex, located in southern Malawi, central Africa,suggest melt derivation from a Rb/Sr- and Nd/Sm-depleted butTh/Pb- and U/Pb-enriched mantle source. Initial 143Nd/144Nd(0.51265–0.51270) isotope ratios from the Chilwa Islandcarbonatites are relatively constant, but their initial 87Sr/86Sr(0.70319–0.70361) ratios are variable. The 18Osmow (9.53–14.15%0)and 13CPDB (–3.27 to –1.50%0) isotope ratios ofthe carbonates are enriched relative to the range of mantlevalues, and there is a negative correlation between 18O andSr isotope ratios. The variations in Sr, C, and O isotopic ratiosfrom the carbonatites suggest secondary processes, such as interactionwith meteoric groundwater during late-stage carbonatite activity.The initial 143Nd/144Nd (0.51246 0.51269) and initial 87Sr/86Sr(0.70344–0.70383) isotope ratios from the intrusive silicaterocks are more variable, and the Sr more radiogenic than thosefrom the carbonatites. Most of the Pb isotope data from Chilwa Island plot to the rightof the geochron and close to the oceanic regression line definedby MORBs and OIBs. Initial Pb isotopic ratios from both carbonatites(207Pb/204Pb 15.63–15.71; 206Pb/204Pb 19.13–19.78)and silicate rocks (207Pb/204Pb 15.61–15.72; 206Pb/204Pb18.18–20.12) show pronounced variations, and form twogroups in Pb-Pb plots. The isotopic variations shown by Nd, Pb, and Sr for the ChilwaIsland carbonatites and intrusive silicates suggest that thesemelts underwent different evolutionary histories. The chemicaldata, including isotopic ratios, from the carbonatites and olivinenephelinites are consistent with magmatic differentiation ofa carbonated-nephelinite magma. A model is proposed in whichdifferentiation of the carbonatite magma was accompanied byfenitization (metasomatic alteration) of the country rocks bycarbonatite-derived fluids, and subsequent alteration of thecarbonatite by hydrothermal activity. The chemical and isotopicdata from the non-nephelinitic intrusive silicate rocks reveala more complex evolutionary history, involving either selectivebinary mixing of lower-crustal granulites and a nephelinitemagma, or incremental batch melting of a depleted source andsubsequent crustal contamination.  相似文献   

20.
40Ar-39Ar analyses of one alkali pyroxenite whole rock and two phlogopite separates of calcite carbonatites from the Sung Valley carbonatite-alkaline complex, which is believed to be a part of the Rajmahal-Bengal-Sylhet (RBS) flood basalt province, yielded indistinguishable plateau ages of 108.8 ± 2.0Ma, 106.4 ± 1.3Ma and 107.5 ± 1.4Ma, respectively. The weighted mean of these ages, 107.2 ± 0.8 Ma, is the time of emplacement of this complex. This implies that Sung Valley complex and probably other such complexes in the Assam-Meghalaya Plateau postdate the main flood basalt event (i.e., the eruption of tholeiites) in the RBS province by ∼10Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号