首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new paleomagnetic data from the Northern Calcareous Alps and the Central Alps of Austria. All new data are overprint magnetizations and can be subdivided into two groups: In rocks older than earliest Rupelian, two remagnetizations reflecting both clockwise and counter-clockwise rotation were detected. In rocks of late Rupelian and younger ages, only a counter-clockwise rotated remagnetization was found. Our results together with results from previous paleomagnetic studies from the Eastern and Southern Alps suggest two main phases of vertical axis rotation. The first, clockwise rotation affecting the Northern Calcareous Alps was active between earliest to Late Rupelian. We propose a model where the Northern Calcareous Alps are segmented into individual blocks. Within a dextral shear corridor these blocks rotated clockwise due to the counter-clockwise rotation of the Southern Alps and Central Alps. The second, counter-clockwise rotation occurred in the Late Oligocene to Middle Miocene, affecting Eastern and Southern Alps. In this stage of orogeny, the internal massifs of the Western Alps were already accreted to the upper plate and therefore included in counter-clockwise rotation. This rotation is contemporaneous with counter-clockwise rotation in the Apennines and opening of the Balearic basin, and a genetic relationship is suggested. A second step of counter-clockwise rotation, reconstructed from published data, is observed in the sedimentary basins at the southeastern margin of the Eastern Alps, where counter-clockwise rotated Miocene and Pliocene sedimentary rocks are present. This rotation is seen in connection to a young counter-clockwise rotation of the Adriatic plate.  相似文献   

2.
Anisian to Ladinian sedimentary rocks of the Northern Calcareous Alps from the area between the Arlberg pass and the Kaisergebirge mountains have been sampled (more than 2500 samples) in about 50 stratigraphic profiles, recorded in great detail. The (silicate) mineral residue, fraction below 2 micron, resulting from solution in formic acid, has been investigated mineralogically. Its sheet silicate content proved to be markedly homogeneous, containing mainly di-octahedral illite minerals, their crystallinity as most prominent result found to increase in a twofold way:
  1. The (Upper Austro-Alpine) Lechtal-Nappe is in its southern part characterized by increasing illite crystallinity from hanging to basal strata within the Ladinian to Anisian stratigraphic column. The source of this effect is found to be older than folding was.
  2. The whole area of sedimentary rocks investigated here presents an increase in illite crystallinity data from north to south (i. e. towards the Central Alpine metamorphic units), irrespective of the presently existing tectonic structures (folding or nappe units within the Upper Austro-Alpine of the Northern Calcareous Alps). Hence the source of this effect must be younger than these events were. With this also a broad margin of “anchimetamorphic” influence has been detected within the southern part of the Northern Calcareous Alps, in the area of the Mieminger and Wetterstein mountains showing even a strong extension towards the north (reaching the location of Garmisch-Partenkirchen)
. These effects can by no means be attributed simply to sedimentary mineral distribution. Contradictionary to such an interpretation are the non-conformity of the illite crystallinity distribution within the existing tectonic setting to the original sedimentary position as well as general sedimentary data (paleo-morphology within the sedimentation area compared to homogeneous mineral distribution). Also (former or recent) sedimentary overburden cannot be quoted for as explanation, with no indication for this influence found so far in the stratigraphie profiles investigated at the thick Triassic sedimentary rock sequence in the steep descent of the Southern Karwendel mountains as well as in more than 6400 m of sedimentary rock sequence investigated in the ultradeep exploration borehole Vorderriß 1. The effects described here are attributed to very low grade metamorphic (“anchimetamorphic”) influences detected by these investigations within the Northern Calcareous Alps. A much higher influence due to increase in temperature compared to increase of pressure is indicated by experimental work done by the author. Even with a cautious attempt to incorporate these newly found temperature effects on Triassic sedimentary rocks into the geologic development of the Northern Calcareous Alps and the Alpine Orogeny, at least for the older effect the conception of “transported” metamorphism is implied, perhaps also for the younger one. This idea is furthermore supported by K/Ar — age determinations of well ordered illite minerals gained from the Schwaz Triassic occurrence, yielding data of about 110–120 mio. y. This age for the older temperature effect can be explained in terms of (starting?) subduction of Penninic units below Austro-Alpine units, long before Austro-Alpine nappes reached their present position within the Northern Calcareous Alps.  相似文献   

3.
Cr-spinel is a common heavy mineral in the sandstones of Cretaceous synorogenic sedimentary formations of the NW Dinarides, Croatia. The rocks occur in isolated exposures in the uplifted basement units of Medvednica, Ivanščica, Žumberak and Samobor Mountains near Zagreb. In this area, evidence of the early Alpine evolution of the Dinarides is obscured due to strong dismemberment of pre-Tertiary tectonostratigraphic units resulting from an intense tectonic history, as well as due to the widespread sedimentary cover of the Pannonian Basin. Electron microprobe analyses of detrital Cr-spinels from the Oštrc Formation reveal that in the Early Cretaceous the ophiolitic source area was predominantly composed of harzburgite peridotites and associated cumulate rocks, which developed in a supra-subduction zone setting. The supply of Cr-spinels with the same chemical signature remained dominant until the end of the Cretaceous, suggesting that exposed remnants of the same ophiolite belt persisted through the Cretaceous and/or that recycling was significant. Similarities with data reported from the Northern Calcareous Alps and the Transdanubian Central Range imply that a rather extensive harzburgitic ophiolite belt probably extended along the Adriatic margin during the Early Cretaceous. A slight trend of increasing variation in the Cr# is observed from the Early to the latest Cretaceous, suggesting that the source areas became more heterogeneous with the ongoing Cretaceous tectonic evolution. Differences in Cr-spinel compositions in two contemporaneous latest Cretaceous formations are well in line with existing data on heavy mineral proportions, which together identify contrasting hinterland geology for these formations and strongly suggest the coeval existence of two separate basins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The Late Cretaceous Brezová and Myjava Groups of the Western Carpathians in Slovakia and formations of the Gosau Group of the Northern Calcareous Alps in Lower Austria comprise similar successions of alluvial/shallow marine deposits overlain by deep water hemipelagic sediments and turbidites. In both areas the heavy mineral spectra of Late Cretaceous sediments contain significant amounts of detrital chrome spinel. In the Early Tertiary the amount of garnet increases. Cluster analysis and correspondence analysis of Coniacian/Santonian and Campanian/Early Maastrichtian heavy mineral data indicate strong similarities between the Gosau deposits of the Lunz Nappe of the north-eastern part of the Northern Calcareous Alps and the Brezova Group of the Western Carpathians. Similar source areas and a similar palaeogeographical position at the northern active margin of the Adriatic/Austroalpine plate are therefore suggested for the two tectonic units.Basin subsidence mechanisms within the Late Cretaceous of the Northern Calcareous Alps are correlated with the Western Carpathians. Subsidence during the Campanian-Maastrichtian is interpreted as a consequence of subduction tectonic erosion along the active northern margin of the Adriatic/Austroalpine plate. Analogous facies and heavy mineral associations from deep water sandstones of the Manin Unit and the Klape Unit indicate accretion of parts of the Pieniny Klippen Belt during the Late Cretaceous along the Adriatic/Austroalpine margin.  相似文献   

5.
6.
A palynology and organic matter study has been carried out on samples of the Upper Triassic Raibl beds from an Upper Austroalpine thrust sheet, preserved in the area of the Iberg Klippen (Laucherenst?ckli). The palynological assemblages indicate an early Carnian (Julian) age. Comparison with well calibrated successions from the Southern Alps suggests a correlation with the Late Julian ammonoid zone Austrotrachyceras austriacum. The lithofacies of the studied sections suggests a substantial similarity to Raibl beds of the Upper Austroalpine of the Northern Calcareous Alps and those of the Silvretta- and the S-charl nappe of the Grisons. The minute Upper Austroalpine thrust sheet represents the westward extension of series with similar facies, which are still preserved in the Northern Calcareous Alps of Liechtenstein and western Austria (Vorarlberg). According to the Thermal Alteration Scale (TAS) of Batten (1996) the observed medium brown colors of the pollen grains correspond to a value of 4/5, which is equivalent to vitrinite reflectance (VR) values of 0.7–0.9 %Ro. In comparison with other sites in Liechtenstein, Vorarlberg and the Upper Austroalpine of Central Grisons (Silvretta and S-charl nappe) with measured VR values of > 2%Ro the organic matter of the studied samples shows only minor thermal alteration, indicating that the Upper Austroalpine thrust sheets of Iberg represent the highest part of the nappe stack in Central Switzerland, formerly covered by a comparatively thin overburden.   相似文献   

7.
Facies analysis, fossil dating, and the study of the metamorphism in the Late Triassic to Early Cretaceous sedimentary successions in the central part of the Northern Calcareous Alps allow to reconstruct the tectonic evolution in the area between the South Penninic Ocean in the northwest and the Tethys Ocean with the Hallstatt Zone in the southeast. The Triassic as well as the Early and Middle Jurassic sediments were deposited in a rifted, transtensive continental margin setting. Around the Middle/Late Jurassic boundary two trenches in front of advancing nappes formed in sequence in the central part of the Northern Calcareous Alps. The southern trench (Late Callovian to Early Oxfordian) accumulated a thick succession of gravitatively redeposited sediments derived from the sedimentary sequences of the accreted Triassic–Liassic Hallstatt Zone deposited on the outer shelf and the margin of the Late Triassic carbonate platform. During a previous stage these sediments derived from sequences deposited on the more distal shelf (Salzberg facies zone of Hallstatt unit, Meliaticum), and in a later stage from more proximal parts (Zlambach facies zone of Hallstatt unit, Late Triassic reef belt). Low temperature–high pressure metamorphism of some Hallstatt limestones before redeposition is explained by the closure of parts of the Tethys Ocean in Middle to Late Jurassic times and associated subduction. In the northern trench (Late Oxfordian to Kimmeridgian) several hundred meters of sediment accumulated including redeposited material from a nearby topographic rise. This rise is interpreted as an advancing nappe front as a result of the subduction process. The sedimentary sealing by Tithonian sediments, documented by uniform deep-water sedimentation (Oberalm Formation), gives an upper time constraint for the tectonic events. In contrast to current models, which propose an extensional regime for the central and eastern Northern Calcareous Alps in the Late Jurassic, we propose a geodynamic model with a compressional regime related to the Kimmerian orogeny.  相似文献   

8.
Analysis of the three-dimensional geometry of Upper Cretaceous clastics in the Muttekopf area (Northern Calcareous Alps, Austria) indicate fold and fault structures active during deposition. Coniacian continental to neritic sedimentation (Lower Gosau Subgroup) was contemporaneous with displacements on NW-trending faults and minor folding along NE-trending axes. From the Santonian onwards (sedimentation of the deep-marine Upper Gosau Subgroup) the NW-trending faults were sealed and large folds with WSW-trending axes developed. The direction of contraction changed to N-S after the end of Gosau deposition in the Danian (Paleocene). Synorogenic sedimentation patterns indicate continuous contraction from the Coniacian to the Late Maastrichtian/?Danian. Therefore, large-scale extension as observed in the central part of the Eastern Alps cannot be documented in the western parts of the Northern Calcareous Alps. A combination of subduction tectonic erosion for the frontal parts and gravitational adjustment of an unstable orogen after nappe stacking for the internal parts possibly accounts for the different development of Gosau basins in the frontal and trailing regions of the Austroalpine wedge.  相似文献   

9.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

10.
This study analyses and discusses well preserved examples of Late Jurassic structures in the Northern Calcareous Alps, located at the Loferer Alm, about 35 km southwest of Salzburg. A detailed sedimentary and structural study of the area was carried out for a better understanding of the local Late Jurassic evolution. The Grubhörndl and Schwarzenbergklamm breccias are chaotic, coarse-grained and locally sourced breccias with mountain-sized and hotel-sized clasts, respectively. Both breccias belong to one single body of breccias, the Grubhörndl breccia representing its more proximal and the Schwarzenbergklamm breccia its more distal part, respectively. Breccia deposition occurred during the time of deposition of the Ruhpolding Radiolarite since the Schwarzenbergklamm breccia is underlain and overlain by these radiolarites. Formation of the breccias was related to a major, presumably north-south trending normal fault scarp. It was accompanied and post-dated by west-directed gravitational sliding of the Upper Triassic limestone (“Oberrhätkalk”), which was extended by about 6% on top of a glide plane in underlying marls. The breccia and slide-related structures are sealed and blanketed by Upper Jurassic and Lower Cretaceous sediments. The normal fault scarp, along which the breccia formed, was probably part of a pull-apart basin associated with strike slip movements. On a regional scale, however, we consider this Late Jurassic strike-slip activity in the western part of the Northern Calcareous Alps to be synchronous with gravitational emplacement of “exotic” slides and breccias (Hallstatt mélange), triggered by Late Jurassic shortening in the eastern part of the Northern Calcareous Alps. Hence, two competing processes affected one and the same continental margin.  相似文献   

11.
12.
Summary ?The rare earth, major and trace element geochemistry of Jurassic deep marine manganese shales allow insight into their environment of deposition. We present data of 24 samples from the Northern Calcareous Alps (Eastern Alps), collected from Late Jurassic strata of the Tennengebirge and from Early Jurassic strata of the Karwendel Mts. Whereas major and trace element geochemistry is controlled by the detrital input, rare earth element data and the relationship between total organic carbon and (pyritic) sulfur can be used to constrain the origin of the manganese accumulation. The data of this study are compatible with a hydrogenous precipitation of manganese by strongly varying redox-conditions at the sediment–water interface of a slope basin. Received December 21, 2001; revised version accepted February 18, 2002  相似文献   

13.
A.K. Satterley 《Earth》1996,40(3-4):181-207
Theories regarding the formation of sedimentary cycles in the 3rd, 4th and 5th order bands are reviewed with reference to the Middle and Upper Triassic of the Northern Calcareous Alps (NCA) and Southern Alps. Milankovitch, autocyclic and tectonic theories are discussed, together with an evaluation of concepts of chaotic sedimentation and a case example from the NCA. Concerning eustasy, 3rd, 4th and 5th order sea-level fluctuations were probably a low-amplitude, low-rate phenomenon caused by fluctuations in the volume of mountain glaciers and ocean water during the Triassic. The Mid and Late Triassic was a non-glacial interval in which polar regions may have been ice-free, so glacio-eustasy can not be expected. Eustatic sea-level variations in the 3rd, 4th and 5th order bands seem to have left no useful imprint on cyclic successions in the region; whatever record there may be is inextricably mixed with two other signals (tectonic activity and autocycles). The review shows how sedimentation in the Triassic of the area was strongly influenced by tectonic activity. This is as true for the Middle and Late Triassic of the NCA as it is for the Southern Alps. Tectonic activity may be responsible for large-scale cyclicity (4th to 3rd order scale). Although seismogenic structures have yet to be identified and described in carbonate successions of the Alps, candidates do exist. Slumped and microfaulted layers in laminated sediments of the Seefeld Basin (Upper Triassic, NCA) have been described as the products of fault movements. The sedimentary record from the NCA and Southern Alps also leaves little doubt that autocyclic processes were important in all environments except perhaps the deep, sediment-starved basins. Most small-scale platform cycles (5th order scale) in the region can be related to autocyclic processes and, in shallow basinal successions, to events such as storms. Previous workers have not been consistent in their interpretation of cyclic successions in the area, applying diverse theories to similar successions. So far, the Steinplatte-Hochkönig platform, with attached Kössen Basin, is the only example interpreted with reference to tectonics and autocyclicity; eustasy was probably not the most important factor in cycle generation in the Triassic of the NCA and Southern Alps. Such an approach could prove useful in future studies.  相似文献   

14.
Em Mrton  Lszl Fodor 《Tectonophysics》2003,363(3-4):201-224
We carried out an integrated paleomagnetic and structural study in the Transdanubian Range, western and central Hungary. As a result, the Tertiary tectonic history of this area can be characterized by three events of counterclockwise (CCW) rotation and four or five phases of brittle deformation. The change of the orientation of stress axes between phases is mainly apparent and reflects the rotation of the faults predating a particular rotation event. The first two rotation events (R1 and R2) were probably governed by the rollback mechanism of the subducting European plate. We suggest that these rotations were taking place from 18–17 and 16–14.5 Ma, respectively, i.e. simultaneously with the rotations of the North Hungarian Paleogene Basin and the main part of the Western Carpathians. However, the angle of both rotations was less in the Transdanubian Range due to increasing distance from the subduction front. The differential rotation was accommodated by extensional faulting by formation of a graben system. On the other hand, the youngest rotation event R3 seems to be connected to the renewed rotation of the Adriatic plate around 5 Ma. Our combined data set strongly supports earlier conclusions, namely, that the different subunits of the Eastern Alpine–Western Carpathian–Northern Pannonian unit (Alcapa) did not form a rigid unit, although they moved in similar manner.  相似文献   

15.
The carbonate platforms of the Wetterstein Formation of the Eastern Alps (Drau Range and Northern Calcareous Alps) show a distinct facies zonation of reefs and lagoons. While some lagoonal areas were episodically emerged and formed lagoonal islands, others remained permanently flooded. The scale of near surface, meteoric or marine diagenesis was related to this lagoonal topography. At shallow burial depth, cementation was dominated by altered marine solutions, which additionally caused recrystallization of metastable constituents of the sediment and earlier marine cements (high magnesian calcite, aragonite) connected with a carbon and oxygen isotopic change to more negative values. Deeper burial cementation shows a succession with two types of saddle dolomite and three types of blocky calcite. Carbon and oxygen isotopic values of these cements show a trend towards more negative values from the first to the last generation, in the following succession: clear saddle dolomite—zoned blocky calcite—cloudy saddle dolomite—post-corrosion blocky calcite—replacive blocky calcite. Fluid inclusion studies of the carbonate cements are interpreted to indicate a deeper burial temperature development that first increases from 175 to 317°C, followed by a temperature decrease to 163–260°C, and subsequent increase up to 316°C, whereby the samples of the Drau Range always show the lowest values. Calculations of the isotopic composition of the water, from which the carbonate cements were precipitated, yielded positive δ18O values from 6.66 to 17.81%o (SMOW), which are characteristic for formation and/or metamorphic waters. Also, the isotopic compositions of the palaeofluids probably changed during deeper burial diagenesis, following the temperature development.  相似文献   

16.
Vitrinite reflectance was measured in Late Carboniferous to Triassic shales, siltstones and marls of the Karawanken Range. Thermal models of the central South-Karawanken Range were calibrated on the basis of these data. They suggest an eroded overburden of more than 3,200 m of Jurassic to Cretaceous sediments and a heat flow in the range of 42 to 60 mW m?2 during the time of maximum subsidence. Because the reconstructed thermal history of the South-Karawanken Range is very similar to the thermal history of the Generoso basin (western Southern Alps), these data provide strong evidence for a deep basinal position of the Southern Karawanken Range during Jurassic to Cretaceous times. A vitrinite reflectance anomaly at the northern margin of the South-Karawanken Range is explained by advective heat transport during the Oligocene. The heat source for the anomalies at the western margin of the Seeberg Rise and in the area between the Periadriatic Lineament and the Donat Fault Zone is unknown. Vitrinite reflectance in Late Triassic sediments indicates the South-Karawanken Range and the South-Zala Unit of the Pannonian basement as exotic blocks in the Sava Composite Unit. This is explained by Miocene displacement of structural units, which were derived from different paleogeographical segments of the Permo-Mesozoic western Tethyan margin.  相似文献   

17.
The Plassen carbonate platform (Kimmeridgian to Early Berriasian) developed above the Callovian to Tithonian carbonate clastic radiolaritic flysch basins of the Northern Calcareous Alps during a tectonically active period in a convergent regime. Remnants of the drowning sequence of the Plassen Formation have been discovered at Mount Plassen in the Austrian Salzkammergut. It is represented by calpionellid-radiolaria wacke- to packstones that, due to the occurrence of Calpionellopsis oblonga (Cadisch), are of Late Berriasian age (oblonga Subzone). Thus, the Plassen Formation at its type-locality shows the most complete profile presently known, documenting the carbonate platform evolution from the initial shallowing upward evolution in the Kimmeridgian until the final Berriasian drowning. The shift from neritic to pelagic sedimentation took place during Berriasian times. A siliciclastic-influenced drowning sequence sealed the highly differentiated Plassen carbonate platform. The former interpretation of a Late Jurassic carbonate platform formed under conditions of tectonic quiescence cannot be confirmed. The onset, evolution and drowning of the Plassen carbonate platform took place at an active continental margin. The tectonic evolution of the Northern Calcareous Alps during the Kimmeridgian to Berriasian time span and the reasons for the final drowning of the Plassen carbonate platform are to be seen in connection with further tectonic shortening after the closure of the Tethys Ocean.  相似文献   

18.
Geochemical and carbonate petrographical methods were coordinated in facies investigations and environmental reevaluations, related to the Hauptdolomit (Hd.) = main doimite formation (±Norian) of the Northern Calcareous Alps.It is practical to distinguish eight, environmentally controlled, facies units (1–8) and three geochemical groups (I–III). Superimposed upon the environment pattern (tidal complex, lagoonal complex, barrier bar and shoal complex) is a predictable (geochemical) dolomitization and non-carbonate distribution.The vertical and lateral facies associations, their waxing and waning in the geologic columns, allow paleogeographic reconstructions. Especially important are clayey, ±bituminous facies, commonly known as “Seefeld facies”, which are interpreted to be of mainly intertidal to very shallow near-shore, rather than of deep-water, origin. Threefold stratigraphy can be substantiated and is found to be practicable for the Hd. formation in a large part of the Northern Calcareous Alps.In an attempt to explain some of the phenomena associated with dolomitization in the Hd. formation, a model of anaerobic dolomitization has been considered, outlining steps of early diagenetic dolomitization.  相似文献   

19.
In the central and eastern part of the Northern Calcareous Alps, Upper Permian evaporitic rocks form a tectonic mélange whose distribution is restricted largely to the topmost thrust unit (Juvavicum). Mudrock and dolostone samples associated with the evaporites in ten major outcrops (mostly mines) were examined in order to constrain the paleothermal conditions of the mélange. Measurements of illite "crystallinity" reveal a regionally variable pattern of metamorphic grade ranging from diagenesis to the high anchizone and possibly epizone. Most samples contained very little organic matter and vitrinite particles were rare. Samples containing vitrinite show consistent minimum reflectance values of ~1.3–1.7% Ro, whereas maximum reflectance values are more variable (up to 4.9%). The former data constrain the minimum burial temperatures to ~160–180°C. The observed variability in illite "crystallinity" and organic maturity both between and within individual outcrops is consistent with the mélange architecture of this unit and is in good agreement with the regional thermal pattern recognized in Middle to Upper Triassic carbonate formations within the Juvavicum by conodont color alteration studies. Mélange formation and heating of the evaporites is suggested to be linked to the Upper Jurassic closure of the Meliata-Hallstatt Ocean and subsequent thrusting of obducted terranes (Juvavicum) into the depositional realm of the Northern Calcareous Alps.  相似文献   

20.
We review the paleomagnetic studies published on the Northern Calcareous Alps (NCA) and also include data from two theses that were not published yet. Moreover, we present new data from upper Santonian to Maastrichtian Gosau deposits from the Neue Welt Area in the easternmost part of the NCA (D = 325.8. I = 37.1, α95 = 8.3, positive fold test, thus indicating counterclockwise rotation and inclination flattening). Although several of the recently published studies provide valuable data, presently the paleomagnetic data base of the NCA does not provide a sufficient frame work for a quantitatively backed paleogeographic model. By thus documenting the state of research, we want to outline major problems regarding the paleomagnetic characterization of the NCA and also specify the kind of paleomagnetic future work that is particularly needed within this mountain range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号