首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
—The study presents the results of the statistical relationship between seasonal northeast monsoon rainfall over Tamil Nadu state of India (TNR) and southeast India (SER) and mid-latitude circulation indices viz., zonal index (ZON) meridional index (MER) and the ratio of meridional to zonal index (M/Z) between the geographical area 35°N to 70°N at 500 hPa level over three sectors and hemisphere, based on 19 years (1971–1989) of data. The results indicate that northeast monsoon rainfall over India shows a strong antecedent relationship with the strength of ZON over all the sectors and hemisphere. The best association is observed during antecedent March over sector I (45°W–90°E) where direct and strong correlation coefficients of 0.69 and 0.64 are obtained with TNR and SER, respectively. Antecedent MAM (spring) season over sector I also shows a significant positive correlation with TNR/SER. Thus, the mid-latitude zonal circulation index may have possible use for the long-range forecasting of northeast monsoon rainfall over India.  相似文献   

2.
—?The hydrostatic Naval Research Laboratory/North Carolina State University (NRL/NCSU) model was used to study the mesoscale dynamics and diurnal variability of the Intertropical Convergence Zone (ITCZ) over the Indian Ocean in the short-range period. To achieve this objective the initial conditions from two northeast monsoon episodes (29 January, 1997 and 29 January, 1998) were run for 48-hour simulations using a triple-nested grid version of the model with 1.5°?×?1.5°, 0.5°?×?0.5° and 0.17°?×?0.17° resolutions. The 1997 case represents a typical northeast monsoon episode, while the 1998 case depicts an abnormal monsoon episode during an El Niño event.¶Comparisons between the model-produced and analyzed mean circulation, wind speed, and associated rainfall for different spatial scales are presented. During the active northeast monsoon season in 1997, the major low-level westerly winds and associated high rainfall rates between 0° and 15°S were simulated reasonably well up to 24 hours. During the 1998 El Niño event, the model was capable of simulating weak anomalous easterly winds (between 0° and 15°S) with much lower rainfall rates up to 48 hours. In both simulations, the finest grid size resulted in largest rainfall rates consistent with Outgoing Longwave Radiation data.¶The model performance was further evaluated using the vertical profiles of the vertical velocity, the specific humidity and temperature differences between the model outputs and the analyses. It is found that during a typical northeast monsoon year, 1997, the water vapor content in the middle troposphere was largely controlled by the low-level convergence determined by strong oceanic heat flux gradient. In contrast, during the 1998 El Niño year moisture was present only in the lower troposphere. Due to strong subsidence associated with Walker circulation over the central and eastern Indian Ocean, deep convection was not present. Finally, the diurnal variations of the maximum rainfall, vertical velocity and total heat flux were noticeable only during the 1997 northeast monsoon year.  相似文献   

3.
Asian summer monsoon sets in over India after the Intertropical Convergence Zone moves across the equator to the northern hemisphere over the Indian Ocean. Sea surface temperature (SST) anomalies on either side of the equator in Indian and Pacific oceans are found related to the date of monsoon onset over Kerala (India). Droughts in the June to September monsoon rainfall of India are followed by warm SST anomalies over tropical Indian Ocean and cold SST anomalies over west Pacific Ocean. These anomalies persist till the following monsoon which gives normal or excess rainfall (tropospheric biennial oscillation). Thus, we do not get in India many successive drought years as in sub-Saharan Africa, thanks to the ocean. Monsoon rainfall of India has a decadal variability in the form of 30-year epochs of frequent (infrequent) drought monsoons occurring alternately. Decadal oscillations of monsoon rainfall and the well-known decadal oscillation in SST of the Atlantic Ocean (also of the Pacific Ocean) are found to run parallel with about the same period close to 60 years and the same phase. In the active–break cycle of the Asian summer monsoon, the ocean and the atmosphere are found to interact on the time scale of 30–60 days. Net heat flux at the ocean surface, monsoon low-level jetstream (LLJ) and the seasonally persisting shallow mixed layer of the ocean north of the LLJ axis play important roles in this interaction. In an El Niño year, the LLJ extends eastwards up to the date line creating an area of shallow ocean mixed layer there, which is hypothesised to lengthen the active–break (AB) cycle typically from 1 month in a La Niña to 2 months in an El Niño year. Indian monsoon droughts are known to be associated with El Niños, and long break monsoon spells are found to be a major cause of monsoon droughts. In the global warming scenario, the observed rapid warming of the equatorial Indian ocean SST has caused the weakening of both the monsoon Hadley circulation and the monsoon LLJ which has been related to the observed rapid decreasing trend in the seasonal number of monsoon depressions.  相似文献   

4.
A relationship between summer monsoon rainfall and sea surface temperature anomalies was investigated with the aim of predicting the monthly scale rainfall during the summer monsoon period over a section (80°–90°E, 14°–24°N) of eastern India that depends heavily upon the rainfall during the summer monsoon months for its agricultural practices. The association between area-averaged rainfall of June over the study zone and global sea surface temperature (SST) anomalies for the period 1982–2008 was examined and the variability of rainfall in monthly scale was calculated. With a view to significant variability in the rainfall in the monthly scale, it was decided to implement the artificial neural network (ANN) for forecasting the monthly scale rainfall using the SST anomalies as a predictor. Finally, the potential of ANN in this prediction has been assessed.  相似文献   

5.
The leading empirical orthogonal function (EOF) of the June-Sept. mean, rotational horizontal wind at 850 hPa and 200 hPa (over the region 12.5°S–42.5°N, 50°E–100°E) from 56 years (1948–2003) of reanalysis (from the National Centers for Environmental Prediction) shows strong anti-cyclonic circulation at upper levels, strong Indian Ocean cross-equatorial flow and on-shore flow over western India at lower levels . The associated principal component (PC) is correlated at the 0.75 level with the seasonal mean observed Indian Monsoon rainfall (IMR). Composite differences of vertically integrated divergence (surface to 800 hPa) and vorticity (surface to 500 hPa) between ``strong' years (PC-1 exceeds one standard deviation σ) and ``weak' years (PC-1 less than − σ) suggest increased rising motion and storminess over the Bay of Bengal and central India. Composite difference maps of station rainfall from the India Meteorological Department (IMD) between strong years and normal years (weak years and normal years) are statistically significant over central India, with strong (weak) years associated with increased (decreased) precipitation. In both cases the maps of rainfall anomalies are of one sign throughout India. The correlation of PC-1 with global seasonal mean SST is strong and negative over the eastern equatorial Pacific, but positive in a surrounding horse-shoe like region. Significant negative correlation occurs in the northwestern Indian Ocean. The lag/lead correlation between the NINO3 SST index and PC-1 is similar to but stronger than the NINO3/IMR correlation. Modest (but significant) negative correlation is seen when NINO3 leads PC-1 (or IMR) by one-two months. Strong negative correlation is seen when PC-1 (or IMR) leads NINO3. The projections of running five-day means of horizontal rotational winds at 850 and 200 hPa onto EOF-1 (after removing the seasonal mean for each year) were pooled for strong, normal and weak years. The strong and normal year probability distribution functions (pdfs) are nearly indistinguishable, but the weak year pdf has more weight for moderate negative values and in both extreme tails and shows some hint of bi-modality.  相似文献   

6.
The relationship between the monsoon rainfall throughout all India, northwest India and peninsular India as well as the onset dates of the monsoon and two indices of southern oscillation (SOI), namely Isla de Pascua minus Darwin (I-D) and Tahiti minus Darwin (T-D) pressure anomaly have been studied for different periods. The study indicates that the monsoon rainfall shows a strong and significant direct relationship with SOI for the concurrent, succeeding autumn and succeeding winter seasons. The magnitude of the direct correlation coefficient for the SOI using (I-D) is enhanced over all India and peninsular India if the above seasons happen to be associated with an easterly phase of the QBO (Quasi-Biennial Oscillation) at 50 mb. The result indicates that the strength of the monsoon plays an important role in the following southern oscillation events in the Pacific Ocean. The premonsoon tendency of the SOI anomaly spring minus winter SOI shows a significant positive correlation with monsoon rainfall over all India, northwest India and peninsular India. The absolute value of the positive correlation coefficient becomes highly enhanced over all India, northwest India as well as peninsular India if the 6-month period from December to March is associated with the westerly phase of the QBO. Hence, the premonsoon SOI tendency parameter can be a useful predictor of Indian monsoon rainfall especially if it happens to be associated with the westerly QBO. Significant negative association is also found between the anomaly of monsoon onset dates and SOI of the previous spring season, the absolute value being higher for SOI (T-D) than for SOI (I-D). The negative correlation coefficient becomes enhanced if the previous springs are associated with a westerly phase of the QBO. It shows that the previous spring SOI has some predictive value for the onset date of Indian monsoon, a positive SOI followed by an early onset of monsoon, andvice versa, especially if it is associated with a westerly phase of the QBO.  相似文献   

7.
The present paper presents a diagnostic study of two recent monsoon years, of which one is dry monsoon year (2009) and the other is wet monsoon year (2010). The study utilized the IMD gridded rainfall data set in addition to the Reynolds SST, NCEP-NCAR reanalysis wind and temperature products, and NOAA OLR. The study revealed that the months July and August are the most crucial months to decide whether the ISMR is wet or dry. However, during July 2009, most of the Indian subcontinent received more than 60 % in the central and western coastal regions. In a wet monsoon year, about 35–45 % of rainfall is contributed during June and July in most parts of India. During these years, the influence of features in the Pacific Ocean played vital role on the Indian summer monsoon rainfall. During 2009, Pacific SST was above normal in nino regions, characteristic of the El Nino structure; however, during 2010, the nino regions were clearly below normal temperature, indicating the La Nina pattern. The associated atmospheric general circulation through equatorial Walker and regional Hadley circulation modulates the tropospheric temperature, and hence the organized convective cloud bands. These cloud bands show different characteristics in northward propagation during dry and wet years of ISMR. During a dry year, the propagation speed and magnitudes are considerably higher than during a wet monsoon year.  相似文献   

8.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

9.
The 2010 boreal summer marked a worldwide abnormal climate. An unprecedented heat wave struck East Asia in July and August 2010. In addition to this, the tropical Indian Ocean was abnormally warm during the summer of 2010. Several heavy rainfall events and associated floods were also reported in the Indian monsoon region. During the season, the monsoon trough (an east–west elongated area of low pressure) was mostly located south of its normal position and monsoon low pressure systems moved south of their normal tracks. This resulted in an uneven spatial distribution with above-normal rainfall over peninsular and Northwest India, and deficient rainfall over central and northeastern parts of India, thus prediction (and simulation) of such anomalous climatic summer season is important. In this context, evolution of vertical moist thermodynamic structure associated with Indian summer monsoon 2010 is studied using regional climate model, reanalysis and satellite observations. This synergised approach is the first of its kind to the best of our knowledge. The model-simulated fields (pressure, temperature, winds and precipitation) are comparable with the respective in situ and reanalysis fields, both in intensity and geographical distribution. The correlation coefficient between model and observed precipitation is 0.5 and the root-mean-square error (RMSE) is 4.8 mm day?1. Inter-comparison of model-simulated fields with satellite observations reveals that the midtropospheric temperature [Water vapour mixing ratio (WVMR)] has RMSE of 0.5 K (1.6 g kg?1), whereas the surface temperature (WVMR) has RMSE of 3.4 K (2.2 g kg?1). Similarly, temporal evolution of vertical structure of temperature with rainfall over central Indian region reveals that the baroclinic nature of monsoon is simulated by the model. The midtropospheric warming associated with rainfall is captured by the model, whereas the model failed to capture the surface response to high and low rainfall events. The model has strong water vapour loading in the whole troposphere, but weaker coherent response with rainfall compared to observations. Thus, strong water vapour loading and overestimation of rainfall are reported in the model. This study put forward that the discrepancy in the model-simulated structure may be reduced by assimilation of satellite observations.  相似文献   

10.
Abstract

This paper presents the relationship between Indian summer monsoon total rainfall and two parameters from Eurasian snow cover, one being the winter snow cover extent and the other the area of spring snowmelt. Satellite-derived Eurasian snow cover extent and Indian monsoon rainfall data were obtained from the NOAA/NESDIS and the India Meteorological Department (IMD) for the period 1966–1985. Seasonal cyclic variations of snow cover showed a higher swing in both the winter and the spring seasons of the cycle as compared to the remaining seasons of the year in the lower region of the cycle. The established inverse relation between winter snow cover and monsoon rainfall during June to September is further extended. Winter snow cover is very strongly correlated with spring snowmelt over Eurasia. Spring snowmelt area is obtained by subtracting the May snow cover extent from that of the previous February. The variations of spring snowmelt were also compared with Indian total monsoon rainfall. The detected correlation is stronger between snowmelt and monsoon rainfall than between the winter snow cover and the monsoon rainfall. There is also a significant multiple correlation among winter snow cover, spring snowmelt and monsoon rainfall. Lastly, a significant multiple correlation suggested a multiple regression equation which might improve the climatic prediction of monsoon rainfall over India.  相似文献   

11.
In this study the predictability of northeast monsoon (Oct–Nov–Dec) rainfall over peninsular India by eight general circulation model (GCM) outputs was analyzed. These GCM outputs (forecasts for the whole season issued in September) were compared with high-resolution observed gridded rainfall data obtained from the India Meteorological Department for the period 1982–2010. Rainfall, interannual variability (IAV), correlation coefficients, and index of agreement were examined for the outputs of eight GCMs and compared with observation. It was found that the models are able to reproduce rainfall and IAV to different extents. The predictive power of GCMs was also judged by determining the signal-to-noise ratio and the external error variance; it was noted that the predictive power of the models was usually very low. To examine dominant modes of interannual variability, empirical orthogonal function (EOF) analysis was also conducted. EOF analysis of the models revealed they were capable of representing the observed precipitation variability to some extent. The teleconnection between the sea surface temperature (SST) and northeast monsoon rainfall was also investigated and results suggest that during OND the SST over the equatorial Indian Ocean, the Bay of Bengal, the central Pacific Ocean (over Nino3 region), and the north and south Atlantic Ocean enhances northeast monsoon rainfall. This observed phenomenon is only predicted by the CCM3v6 model.  相似文献   

12.
In this study, sensitivity of the Indian summer monsoon simulation to the Himalayan orography representation in a regional climate model (RegCM) is examined. The prescribed height of the Himalayan orography is less in the RegCM model than the actual height of the Himalayas. Therefore, in order to understand the impact of the Himalayan orography representation on the Indian summer monsoon, the height of the Himalayan orography is increased (decreased) by 10 % from its control height in the RegCM model. Three distinct monsoon years such as deficit (1987), excess (1988) and normal rainfall years are considered for this study. The performance of the RegCM model is tested with the use of a driving force from the reanalysis data and a global model output. IMD gridded rainfall and the reanalysis-2 data are used as verification analysis to validate the model results. The RegCM model has the potential to represent mean rainfall distribution over India as well as the upper air circulation patterns and some of the semi-permanent features during the Indian summer monsoon season. The skill of RegCM is reasonable in representing the variation in circulation and precipitation pattern and intensity during two contrasting rainfall years. The simulated seasonal mean rainfall over many parts of India especially, the foothills of the Himalaya, west coast of India and over the north east India along with the whole of India are more when the orography height is increased. The low level southwesterly wind including the Somali jet stream as well as upper air circulation associated with the tropical easterly jet stream become stronger with the enhancement of the Himalayan orography. Statistical analysis suggests that the distribution and intensity of rainfall is represented better with the increased orography of RegCM by 10 % from its control height. Thus, representation of the Himalayan orography in the model is close to actual and may enhance the skill in seasonal scale simulation of the Indian summer monsoon.  相似文献   

13.
The interannual variability of the tropical Indian Ocean is studied using Simple Ocean Data Assimilation (SODA) sea surface height anomalies (SSHA) and Hadley Centre Ice Sea Surface Temperature anomalies. Biannual Rossby waves (BRW) were observed along the 1.5° S and 10.5° S latitudes during the Indian Ocean Dipole (IOD) years. The SODA SSHA and its BRW components were comparable with those of Topex/Poseidon. The phase speed of BRW along 1.5° S is −28 cm/s, which is comparable with the theoretical speed of first mode baroclinic (equatorially trapped) Rossby waves. This is the first study to show that no such propagation is seen along 1.5° S during El Nino years in the absence of IOD. Thus the westward propagating downwelling BRW in the equatorial Indian Ocean is hypothesized as a potential predictor for IOD. These waves transport heat from the eastern equatorial Indian Ocean to west, long before the dipole formation. Along 10.5° S, the BRW formation mechanisms during the El Nino and IOD years were found to be different. The eastern boundary variations along 10.5° S, being localized, do not influence the ocean interior considerably. Major portion of the interannual variability of the thermocline, is caused by the Ekman pumping integrated along the characteristic lines of Rossby waves. The study provides evidence of internal dynamics in the IOD formation. The positive trend in the downwelling BRW (both in SODA and Topex/Poseidon) is of great concern, as it contributes to the Indian Ocean warming.  相似文献   

14.
给定1948~1999年逐月变化的全球观测的海表温度分布,使用全球大气环流模式(CCM3/NCAR)模拟了大气对海表温度变化的响应,利用SVD和合成检验方法,分析了El Nino发展阶段夏季、成熟阶段冬季以及衰亡阶段夏季东亚大气环流的年际异常型.结果表明:El Nino发展阶段夏季,中国东北、朝鲜半岛以及日本海附近为高度负异常中心,西太平洋副高偏弱、偏东,东亚夏季风增强;El Nino成熟阶段冬季,东亚大槽加强,东亚北部冬季风加强;El Nino衰亡阶段夏季,西太平洋副高偏强、偏南、西伸,东亚夏季风减弱;El Nino事件在其衰亡阶段夏季与东亚大气环流异常的关系最紧密,其次是成熟阶段冬季,最后是发展阶段夏季.模拟的El Nino演变不同阶段东亚大气环流年际异常型易于解释以往研究中观测分析揭示的由El Nino造成的我国东部气温和降水异常型.  相似文献   

15.
In this study, the nature of basin‐scale hydroclimatic association for Indian subcontinent is investigated. It is found that, the large‐scale circulation information from Indian Ocean is also equally important in addition to the El Niño‐Southern Oscillation (ENSO), owing to the geographical location of Indian subcontinent. The hydroclimatic association of the variation of monsoon inflow into the Hirakud reservoir in India is investigated using ENSO and EQUatorial INdian Ocean Oscillation (EQUINOO, the atmospheric part of Indian Ocean Dipole mode) as the large‐scale circulation information from tropical Pacific Ocean and Indian Ocean regions respectively. Individual associations of ENSO & EQUINOO indices with inflow into Hirakud reservoir are also assessed and found to be weak. However, the association of inflows into Hirakud reservoir with the composite index (CI) of ENSO and EQUINOO is quite strong. Thus, the large‐scale circulation information from Indian Ocean is also important apart form the ENSO. The potential of the combined information of ENSO and EQUINOO for predicting the inflows during monsoon is also investigated with promising results. The results of this study will be helpful to water resources managers due to fact that the nature of monsoon inflow is becoming available as an early prediction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Monsoon water cycle is the lifeline to over 60 per cent of the world’s population. Throughout history, the monsoon-related calamities of droughts and floods have determined the life pattern of people. The association of Green House Gases (GHGs) particularly Carbon dioxide (CO2) with monsoon has been greatly debated amongst the scientific community in the past. The effect of CO2 on the monsoon rainfall over the Indian–Indonesian region (8–30°N, 65°–100°E) is being investigated using satellite data. The correlation coefficient (Rxy) between CO2 and monsoon is analysed. The Rxy is not significantly positive over a greater part of the study region, except a few regions. The inter-annual anomalies of CO2 is identified for playing a secondary role to influencing monsoon while other phenomenon like ENSO might be exerting a much greater influence.  相似文献   

17.
--A large part of the rainfall over India during the summer monsoon season (June-September) is contributed by synoptic scale disturbances such as monsoon depressions. To study the evolution of such disturbances in Atmospheric General Circulation Models (AGCM), the Hadley Centre AGCM (HadAM2b) has been integrated for 15 summer monsoons (1979-1993) and the output was examined for the presence of synoptic scale disturbances such as monsoon depressions, low pressure areas, land lows and land depressions over the Indian summer monsoon region. The atmospheric initial condition for each of these integrations was of 23rd May and observed Sea Surface Temperatures (SST) were described as a boundary condition.¶Although the horizontal resolution of the AGCM used in this study is only 2.5° 2 3.75° lat. long., the model is able to simulate a few monsoon disturbances. The important features of these simulated disturbances are presented. The features of the simulated disturbances are realistic. The morphologies of a well simulated monsoon depression and a simulated low pressure area are presented as examples. The frequency of the simulated monsoon depressions is less than the climatological frequency of the depressions during all four monsoon months.  相似文献   

18.
The monsoon seasons of 2010 and 2011, with almost identical seasonal total rainfall over India from June to September, are associated with slightly different patterns of intraseasonal rainfall fluctuations. Similarly, the year 2012, with relatively less rainfall compared to 2010 and 2011, also witnessed different intraseasonal rainfall fluctuations, leading to drought-like situations over some parts of the country. The present article discusses the forecasting aspect of monsoon activity over India during these 3 years on an extended range time scale (up to 3 weeks) by using the multimodel ensemble (MME), based on operational coupled model outputs from the ECMWF monthly forecasting system and the NCEP’s Climate Forecast System (CFS). The average correlation coefficient (CC) of weekly observed all-India rainfall (AIR) and the corresponding MME forecast AIR is found to be significant, above the 98 % level up to 2 weeks (up to 18 days) with a slight positive CC for the week 3 (days 19–25) forecast. However, like the variation of observed intraseasonal rainfall fluctuations during 2010, 2011 and 2012 monsoon seasons, the MME forecast skills of weekly AIR are also found to be different from one another, with the 2012 monsoon season indicating significant CC (above 99 % level) up to week 2 (12–18 days), and also a comparatively higher CC (0.45) during the week 3 forecast (days 19–25). The average CC between observed and forecasted weekly AIR rainfall over four homogeneous regions of India is found to be the lowest over the southern peninsula of India (SPI), and northeast India (NEI) is found to be significant only for the week 1 (days 5–11) forecast. However, the CC is found to be significant over northwest India (NWI) and central India (CEI), at least above the 90 % level up to 18 days, with NWI having slightly better skill compared to the CEI. For the individual monsoon seasons of 2010, 2011 and 2012, there is some variation in CC and other skill scores over the four homogeneous regions. Thus the slight variations in the characteristics of intraseasonal monsoon rainfall over India is associated with variations in predictive skill of the coupled models and the MME-based predictions of intraseasonal monsoon fluctuations for 2–3 weeks, providing encouraging results. The MME forecast in 2010 is also able to provide useful guidance, well in advance, about an active September associated with a delayed withdrawal of the monsoon and also the heavy rainfall over north Pakistan.  相似文献   

19.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

20.
Quasi-biennial oscillation (QBO) is a predominant phenomenon in the tropical stratosphere and troposphere. The possible interactions between the stratospheric QBO and tropospheric biennial oscillation (TBO) over the Indian monsoon region as well as the equatorial region is investigated using the zonal wind data of 23 vertical levels (1000–1 hpa) from 1960–2002. The structure of lower stratosphere and troposphere are entirely different over the equator and India. In biennial scales, both the stratosphere and troposphere over the Indian region are closely related and winter season QBO is a good predictor of Indian summer monsoon rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号