首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

2.
Modeling of the seismic, thermal, and density structure of the Siberian craton lithospheric mantle at depths of 100-300 km has been performed along the superlong Meteorite and Rift seismic profiles. The 2D velocity sections reflect the specific features of the internal structure of the craton: lateral inhomogeneities, seismic-boundary relief at depths of ~ 100, 150, 240, and 300 km, velocities of 8.3-8.7 km/s, and the lack of low-velocity zone in the lower lithosphere. Mapping of the thermal state along the Meteorite and Rift profiles shows a significant temperature decrease in the cratonic mantle as compared with the average temperatures of the surrounding Phanerozoic mantle (> 300 °C) estimated from the global reference model AK135. Lateral temperature variations, reflecting the thermal anomalies in the cratonic keel, are observed at depths of < 200 km (with some decrease in temperature in the central part of the craton), whereas at depths of > 200 km, temperature variations are negligible. This suggests the preservation of residual thermal perturbations at the base of the lithosphere, which must lead to the temperature equalization in the transition zone between the lithosphere and the asthenosphere. Variations in chemical composition have a negligible effect on the thermal state but affect strongly the density structure of the mantle. The results of modeling admit a significant fertilization of matter at depths more than 180-200 km and stratification of the cratonic mantle by chemical composition. The thicknesses of chemical (petrologic) and thermal boundary layers beneath the Siberian craton are estimated. The petrologic lithosphere is localized at depths of ~ 200 km. The bottom of the thermal boundary layer is close to the 1450 °C isotherm and is localized at a depth of 300 km, which agrees with heat flow and seismic-tomography data.  相似文献   

3.
The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.  相似文献   

4.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

5.
《Gondwana Research》2014,25(3-4):849-864
We have imaged the lithospheric structure beneath the central and western North China Craton (NCC) with Rayleigh wave tomography. The Rayleigh waveforms of 100 teleseismic events recorded by 208 broadband stations are used to yield high-resolution phase velocity maps at 13 periods from 20 s to 143 s. A 3-D S-wave velocity model is constructed based on the phase velocity maps. Our S-wave velocity model is broadly consistent with the results of previous tomography studies, but shows more detailed variations within the lithosphere. The Trans-North China Orogen (TNCO) is generally characterized by low-velocity anomalies but exhibits great heterogeneities. Two major low-velocity zones (LVZs) are observed in the north and south, respectively. The northern LVZ laterally coincides with sites of Cenozoic magmatism and extends to depths greater than 200 km. We propose that a small-scale mantle upwelling is present, confined to the north of the TNCO. A high-velocity patch in the uppermost mantle is also observed between the two LVZs adjacent to the narrow transtensional zone of the Cenozoic Shanxi–Shaanxi Rift (SSR). We interpret this as the remnant of a cratonic mantle root. The Ordos Block in the western NCC is associated with high-velocity anomalies, similarly reflecting the existence of cratonic mantle root, but a discernible low-velocity layer is observed at depths of 100–150 km in this location. We interpret that this mid-lithospheric structure was probably formed by metasomatic processes during the early formation of the NCC. Based on the observations from our S-wave velocity model, we conclude that the current highly heterogeneous lithospheric structure beneath the TNCO is the result of multiphase reworking of pre-existing mechanically weak zones since the amalgamation of the craton. The latest Cenozoic lithospheric reworking is dominated by the far-field effects of both Pacific plate subduction and the India–Eurasia collision.  相似文献   

6.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

7.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

8.
Lithospheric thinning beneath the North China Craton is widely recognized, but whether the Yangtze block has undergone the same process is a controversial issue. Based on a detailed petrographic study, a suite of xenoliths from the Lianshan Cenozoic basalts have been analyzed for the compositions of minerals and whole rocks, and their Sr–Nd isotopes to probe the nature and evolution of the subcontinental lithospheric mantle beneath the lower Yangtze block. The Lianshan xenoliths can be subdivided into two Types: the main Type 1 xenoliths (9–15% clinopyroxene and olivine-Mg# < 90) and minor Type 2 peridotites (1.8–6.2% clinopyroxene and olivine-Mg# > 90). Type 1 peridotites are characterized by low MgO, high levels of basaltic components (i.e., Al2O3, CaO and TiO2), LREE-depleted patterns in clinopyroxenes and whole rocks, and relatively high 143Nd/144Nd (0.513219–0.513331) and low 86Sr/87Sr (0.702279–0.702789). These features suggest that Type 1 peridotites represent fragments of the newly accreted fertile lithospheric mantle that have undergone ~ 1% of fractional partial melting and later weak silicate–melt metasomatism, similar to Phanerozoic lithospheric mantle beneath the eastern North China Craton. Type 2 peridotites may be shallow relics of the older lithospheric mantle depleted in basaltic components, with LREE-enriched and HREE-depleted patterns, relatively low 143Nd/144Nd (0.512499–0.512956) and high 86Sr/87Sr (0.703275–0.703997), which can be produced by 9–14% partial melting and subsequent carbonatite–melt metasomatism. Neither type shows a correlation between equilibration temperatures and Mg# in olivine, indicating that the lithospheric mantle is not compositionally stratified, but both types coexist at similar depths. This coexistence suggests that the residual refractory lithospheric mantle (i.e., Type 2 peridotites) may be irregularly eroded by upwelling asthenosphere materials along weak zones and eventually replaced to create a new and fertile lithosphere mantle (i.e., Type 1 xenoliths) as the asthenosphere cooled. Therefore, the subcontinental lithospheric mantle beneath the lower Yangtze block shared a common evolutional dynamic environment with that beneath the eastern North China Craton during late Mesozoic–Cenozoic time.  相似文献   

9.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

10.
The origin of high topography in southern Africa is enigmatic. By comparing topography in different cratons, we demonstrate that in southern Africa both the Archean and Proterozoic blocks have surface elevation 500–700 m higher than in any other craton worldwide, except for the Tanzanian Craton. An unusually high topography may be caused by a low density (high depletion) of the cratonic lithospheric mantle and/or by the dynamic support of the mantle with origin below the depth of isostatic compensation (assumed here to be at the lithosphere base). We use free-board constraints to examine the relative contributions of the both factors to surface topography in the cratons of southern Africa. Our analysis takes advantage of the SASE seismic experiment which provided high resolution regional models of the crustal thickness.We calculate the model of density structure of the lithospheric mantle in southern Africa and show that it has an overall agreement with xenolith-based data for lithospheric terranes of different ages. Density of lithospheric mantle has significant short-wavelength variations in all tectonic blocks of southern Africa and has typical SPT values of ca. 3.37–3.41 g/cm3 in the Cape Fold and Namaqua–Natal fold belts, ca. 3.34–3.35 g/cm3 in the Proterozoic Okwa block and the Bushveld Intrusion Complex, ca. 3.34–3.37 g/cm3 in the Limpopo Belt, and ca. 3.32–3.33 g/cm3 in the Kaapvaal and southern Zimbabwe cratons.The results indicate that 0.5–1.0 km of surface topography, with the most likely value of ca. 0.5 km, cannot be explained by the lithosphere structure within the petrologically permitted range of mantle densities and requires the dynamic (or static) contribution from the sublithospheric mantle. Given a low amplitude of regional free air gravity anomalies (ca. + 20 mGal on average), we propose that mantle residual (dynamic) topography may be associated with the low-density region below the depth of isostatic compensation. A possible candidate is the low velocity layer between the lithospheric base and the mantle transition zone, where a temperature anomaly of 100–200 °C in a ca. 100–150 km thick layer may explain the observed reduction in Vs velocity and may produce ca. 0.5–1.0 km to the regional topographic uplift.  相似文献   

11.
Intraplate volcanism during the Late Cenozoic in the Leiqiong area of southernmost China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. To clarify detailed features of the Hainan plume, such as the morphology of its magmatic conduits, the depth of its magmatic pool in the upper mantle and the pattern of mantle upwelling, we determined tomographic images of the mantle down to a depth of 1100 km beneath southern China using 18,503 high-quality arrival-time data of 392 distant earthquakes recorded by a dense seismic array. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with a diameter of 200–300 km extending down to the lower mantle beneath north of the Hainan hotspot and a head spreading laterally in and around the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, the plume head is decomposed into smaller patches, and when reaching the base of the lithosphere, a pancake-like anomaly has formed to feed the Hainan hotspot. This result challenges the classical model of a fixed thermal plume that rises vertically to the surface. Hence we propose a new layering-style model for the magmatic upwelling of the Hainan plume. Our results indicate spatial complexities and variations of mantle plumes probably due to heterogeneous compositions and thermochemical structures of the deep mantle.  相似文献   

12.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

13.
A passive seismic experiment across the Longmenshan (LMS) fault belt had been conducted between August 2006 and July 2007 for the understanding of geodynamic process between the Eastern Tibet and Sichuan basin. We herein collected 3677 first P arrival times with high precision from seismograms of 288 teleseismic events so as to reconstruct the upper mantle velocity structure. Our results show that the depth of the Lithosphere–asthenosphere boundary (LAB) changes from 70 km beneath Eastern Tibet to about 110 km beneath Longquanshan, Sichuan Basin, which is consistent with the receiver function imaging results. The very thin mantle part of the lithosphere beneath Eastern Tibet may suggest the lithosphere delamination due to strong interaction between the Tibetan eastward escaping flow and the rigid resisting Sichuan basin, which can be further supported by the existences of two high-velocity anomalies beneath LAB in our imaging result. We also find there are two related low-velocity anomalies beneath the LMS fault belt, which may indicate magmatic upwelling from lithosphere delamination and account for the origin of tremendous energy needed by the devastating Wenchuan earthquake.  相似文献   

14.
《Gondwana Research》2013,23(3-4):1060-1067
Convergence between the Indian plate and the Eurasian plate has resulted in the uplift of the Tibetan Plateau, and understanding the associated dynamical processes requires investigation of the structures of the crust and the lithosphere of the Tibetan Plateau. Yunnan is located in the southwest edge of the plateau and adjacent to Myanmar to the west. Previous observations have confirmed that there is a sharp transition in mantle anisotropy in this area, as well as clockwise rotations of the surface velocity, surface strain, and fault orientation. We use S receiver functions from 54 permanent broad-band stations to investigate the structures of the crust and the lithosphere beneath Yunnan. The depth of the Moho is found to range from 36 to 40 km beneath southern Yunnan and from 55 to 60 km beneath northwestern Yunnan, with a dramatic variation across latitude 25–26°N. The depth of the lithosphere–asthenosphere boundary (LAB) ranges from 180 km to less than 70 km, also varying abruptly across latitude 25–26°N, which is consistent with the sudden change of the fast S-wave direction (from NW–SE to E–W across 26–28°N). In the north of the transition belt, the lithosphere is driven by asthenospheric flow from Tibet, and the crust and the upper mantle are mechanically coupled and moving southward. Because the northeastward movement of the crust in the Burma micro-plate is absorbed by the right-lateral Sagaing Fault, the crust in Yunnan keeps the original southward movement. However, in the south of the transition belt, the northeastward mantle flow from Myanmar and the southward mantle flow from Tibet interact and evolve into an eastward flow (by momentum conservation) as shown by the structure of the LAB. This resulting mantle flow has a direction different from that of the crustal movement. It is concluded that the Sagaing Fault causes the west boundary condition of the crust to be different from that of the lithospheric mantle, thus leading to crust–mantle decoupling in Yunnan.  相似文献   

15.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

16.
The large scale Mesozoic magmatism and related metallogeny in the Taihang Mountains (TM) provide important clues for the lithospheric thinning of the North China Craton (NCC). Among the ore deposits, the vein gold mineralization of Shihu in the Fuping region and the skarn ore deposit of Xishimen in the Wu'an region represent typical Mesozoic metallogeny in the TM. In the Shihu gold mine, the Mapeng batholith is dominantly composed of monzogranite and granodiorite, whereas, the Wu'an pluton in the Xishimen iron mine mainly comprises monzonite and diorite. Here we present zircon LA–ICP-MS U–Pb data from 8 samples which reveal the timing of magmatism in the TM as ca. 130 Ma, which is contemporaneous with the large-scale metallogeny in the margins of the NCC. The δ34S values recorded in the sulfide minerals from the Shihu gold deposit and the Xishimen skarn iron deposit show a range of 2.2‰–5.0‰, and 11.6‰–18.7‰, respectively. Helium isotopic compositions of fluid inclusions in pyrite from the Shihu gold deposit vary from 0.12 to 1.98 Ra (where Ra is the 3He/4He ratio of air = 1.39 × 10? 6), with calculated mantle helium values of 1.4%–25%, whereas, those of the Xishimen skarn iron deposit range from 0.06 to 0.19 Ra, with calculated mantle helium of 0.7%–2.2%. The S–He–Ar isotopic data suggest a lower crustal origin for the ore-forming components, with variable inputs of mantle source. The large population of inherited zircons in our samples, with 207Pb/206Pb ages ranging between 2500 Ma and 1800 Ma, also supports crustal participation. Our data reveal that the Shihu gold deposit witnessed greater mantle input than the Xishimen skarn iron deposit, suggesting that the continental lithosphere is markedly thinner under the Fuping region than that under the Wu'an region. Our interpretation is also supported by published data from two ultra-broadband high-precision magnetotelluric sounding profiles across the TM region showing a variation in the lithosphere thickness from 155 km to 70 km while moving from the south (Wu'an region) to the north (Fuping region). Our study suggests that inhomogeneous lithospheric thinning in the central NCC occurred at least as early as ca. 130 Ma ago.  相似文献   

17.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

18.
Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere–asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N–S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ∼190 km along the Himalayan front that reduces to ∼155 km under the southern part of the Ganga and the Vindhyan basins increasing to ∼175 km south of the Satpura Mobile belt, reducing to ∼155–140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ∼120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT).The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ∼37–38 km under the EDC, increasing to ∼40–45 km under the SGT and ∼40–42 km under the northern part of the Ganga basin with a bulge up to ∼36 km under its southern part. Reduced lithospheric and crustal thicknesses under the Vindhyan and the Ganga basins are attributed to the lithospheric flexure of the Indian plate due to Himalaya. Crustal bulge due to lithospheric flexure is well reflected in isostatic Moho based on flexural model of average effective elastic thickness of ∼40 km. Lithospheric flexure causes high heat flow that is aided by large crustal scale fault system of mobile belts and their extensions northwards in this section, which may be responsible for lower crustal bulk density in the northern part. A low density and high thermal regime in north India north of the SMB compared to south India, however does not conform to the high S-wave velocity in the northern part and thus it is attributed to changes in composition between the northern and the southern parts indicating a reworked lithosphere. Some of the long wavelength gravity anomalies along the east and the west coasts of India are attributed to the intrusives that caused the breakup of India from Antarctica, and Africa, Madagascar and Seychelles along the east and the west coasts of India, respectively.  相似文献   

19.
We present a new regional model for the depth-averaged density structure of the cratonic lithospheric mantle in southern Africa constrained on a 30′ × 30′ grid and discuss it in relation to regional seismic models for the crust and upper mantle, geochemical data on kimberlite-hosted mantle xenoliths, and data on kimberlite ages and distribution. Our calculations of mantle density are based on free-board constraints, account for mantle contribution to surface topography of ca. 0.5–1.0 km, and have uncertainty ranging from ca. 0.01 g/cm3 for the Archean terrains to ca. 0.03 g/cm3 for the adjacent fold belts. We demonstrate that in southern Africa, the lithospheric mantle has a general trend in mantle density increase from Archean to younger lithospheric terranes. Density of the Kaapvaal mantle is typically cratonic, with a subtle difference between the eastern, more depleted, (3.31–3.33 g/cm3) and the western (3.32–3.34 g/cm3) blocks. The Witwatersrand basin and the Bushveld Intrusion Complex appear as distinct blocks with an increased mantle density (3.34–3.35 g/cm3) with values typical of Proterozoic rather than Archean mantle. We attribute a significantly increased mantle density in these tectonic units and beneath the Archean Limpopo belt (3.34–3.37 g/cm3) to melt-metasomatism with an addition of a basaltic component. The Proterozoic Kheis, Okwa, and Namaqua–Natal belts and the Western Cape Fold Belt with the late Proterozoic basement have an overall fertile mantle (ca. 3.37 g/cm3) with local (100–300 km across) low-density (down to 3.34 g/cm3) and high-density (up to 3.41 g/cm3) anomalies. High (3.40–3.42 g/cm3) mantle densities beneath the Eastern Cape Fold belt require the presence of a significant amount of eclogite in the mantle, such as associated with subducted oceanic slabs.We find a strong correlation between the calculated density of the lithospheric mantle, the crustal structure, the spatial pattern of kimberlites, and their emplacement ages. (1) Blocks with the lowest values of mantle density (ca. 3.30 g/cm3) are not sampled by kimberlites and may represent the “pristine” Archean mantle. (2) Young (< 90 Ma) Group I kimberlites sample mantle with higher density (3.35 ± 0.03 g/cm3) than the older Group II kimberlites (3.33 ± 0.01 g/cm3), but the results may be biased by incomplete information on kimberlite ages. (3) Diamondiferous kimberlites are characteristic of regions with a low-density cratonic mantle (3.32–3.35 g/cm3), while non-diamondiferous kimberlites sample mantle with a broad range of density values. (4) Kimberlite-rich regions have a strong seismic velocity contrast at the Moho, thin crust (35–40 km) and low-density (3.32–3.33 g/cm3) mantle, while kimberlite-poor regions have a transitional Moho, thick crust (40–50 km), and denser mantle (3.34–3.36 g/cm3). We explain this pattern by a lithosphere-scale (presumably, pre-kimberlite) magmatic event in kimberlite-poor regions, which affected the Moho sharpness and the crustal thickness through magmatic underplating and modified the composition and rheology of the lithospheric mantle to make it unfavorable for consequent kimberlite eruptions. (5) Density anomalies in the lithospheric mantle show inverse correlation with seismic Vp, Vs velocities at 100–150 km depth. However, this correlation is weaker than reported in experimental studies and indicates that density-velocity relationship in the cratonic mantle is strongly non-unique.  相似文献   

20.
Distant earthquake data recorded by seven sub-arrays of the ongoing WOMBAT rolling seismic array deployment in southeast Australia are combined for the first time to constrain 3-D variations in upper mantle P-wavespeed via teleseismic tomography. The seven arrays comprise a total of 276 short period recorders spaced at intervals of approximately 50 km, thus allowing unprecedented resolution of the upper mantle over a large region. In the mantle lithosphere immediately below the crust (~ 50 km depth), dominant variations in velocity tend to strike east–west, and share little resemblance to Palaeozoic boundaries in the shallow crust inferred from surface geology and potential field data. A broad region of elevated wavespeed beneath northern Victoria may represent the signature of underplated igneous rocks associated with detachment faulting during the break-up of Australia and Antarctica. A distinct low velocity anomaly in southern Victoria appears to correlate well with the Quaternary Newer Volcanic Provinces. Towards the base of the mantle lithosphere, the dominant structural trend becomes north–south, and five distinct velocity zones become apparent. Of particular note is a transition from higher wavespeed in the west to lower wavespeed in the east beneath the Stawell Zone, implying that the Proterozoic lithosphere of the Delamerian Orogen protrudes eastward beneath the Western subprovince of the Lachlan Orogen. This transition zone extends northwards from southern Victoria into central New South Wales (the northward limit of the arrays), and is one of the dominant features of the model. Further east, there is a transition from lower to higher wavespeeds in the vicinity of the boundary between the Western and Central subprovinces of the Lachlan Orogen, which has several plausible explanations, including the existence of a Proterozoic continental fragment beneath the Wagga–Omeo Zone. The presence of elevated wavespeeds beneath the Melbourne Zone in Victoria, although not well constrained due to limited data coverage, provides some support to the Selwyn Block model, which proposes a northward extension beneath Bass Strait of the Proterozoic core of Tasmania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号