首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhombic cell analysis as outlined in the first paper of the present seriesis applied to samples of varying depths and liming luminosities of the IRAS/PSCzCatalogue. Numerical indices are introduced to summarize essential information.Because of the discrete nature of the analysis and of the space distribution of galax-ies, the indices for a given sample must be regarded as each having an irreduciblescatter. Despite the scatter, the mean indices show remarkable variations acrossthe samples. The underlying factor for the variations is shown to be the limitingluminosity rather than the sampling depth. As samples of more and more luminousgalaxies are considered over a range of some 2.5 magnitudes (a factor of some 75in space density), the morphology of the filled and empty regions defined by thegalaxies degrades steadily towards insignificance, and the degrading is faster for thefilled than the empty region.  相似文献   

2.
We study the local structure of Cosmic Microwave Background (CMB) tem-perature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim-ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.  相似文献   

3.
LETTERS1 INTRODUCTIONIn the hierarchical scenario of structure formation, massive dark ha1os fOrm by gravitationalaggregation of individual low-mass objects, whi1e the stel1ar disks of spiral galaxies like theMilky Way form by accretion of gas which cools and falls onto the galaxies from an extendedsurrounding reservoir. FOr a massive galaxy of M ~ 10"MO, the surrounding gas can be heatedto temperature of T ~ 106 K by gravitational1y-driven shocks, the dominant cooling is thus dueto …  相似文献   

4.
We use the magnitude-redshift relation for the type Ia supernova datacompiled by Riess et al. to analyze the Cardassian expansion scenario. This sce-nario assumes the universe to be flat, matter dominated, and accelerating, but contains no vacuum contribution.The best fitting model parameters are H0=65.3kms^-1 Mpc^-1, n= 0.35 and Ω= 0.05. When the highest redshift supernova,SN 1997ck, is excluded, H0 remains the same, but n becomes 0.20 and Ωm, 0.15, and the matter density remains unreasonably low. Our result shows that this particular scenario is strongly disfavoured by the SNeIa data.  相似文献   

5.
We calculate the gravitational lensing probabilities by cold dark matter (CDM) halos with different density profiles, and compare them with current observations from the Cosmic Lens All-Sky Survey (CLASS) and the Jodrell-Bank VLA Astrometric Survey (JVAS). We find that the lensing probability is dramatically sensitive to the clumping of the dark matter, or quantitatively, the concentration parameter. We also find that our predicted lensing probabilities in most cases show inconsistency with the observations. It is argued that high lensing probability may not be an effective tool for probing the statistical properties of inner structures of dark matter halos.  相似文献   

6.
Previous observations with the Rossi X-ray Timing Explorer ( RXTE ) have suggested that the power spectral density (PSD) of NGC 3783 flattens to a slope near zero at low frequencies, in a similar manner to that of Galactic black hole X-ray binary systems (GBHs) in the 'hard' state. The low radio flux emitted by this object, however, is inconsistent with a hard state interpretation. The accretion rate of NGC 3783 (∼7 per cent of the Eddington rate) is similar to that of other active galactic nuclei (AGN) with 'soft'-state PSDs and higher than that at which the GBH Cyg X-1, with which AGN are often compared, changes between 'hard' and 'soft' states (∼2 per cent of the Eddington rate). If NGC 3783 really does have a 'hard'-state PSD, it would be quite unusual and would indicate that AGN and GBHs are not quite as similar as we currently believe. Here we present an improved X-ray PSD of NGC 3783, spanning from ∼10−8 to ∼10−3 Hz, based on considerably extended (5.5 yr) RXTE observations combined with two orbits of continuous observation by XMM–Newton . We show that this PSD is, in fact, well fitted by a 'soft' state model which has only one break, at high frequencies. Although a 'hard'-state model can also fit the data, the improvement in fit by adding a second break at low frequency is not significant. Thus NGC 3783 is not unusual. These results leave Arakelian 564 as the only AGN which shows a second break at low frequencies, although in that case the very high accretion rate implies a 'very high', rather than 'hard' state PSD. The break frequency found in NGC 3783 is consistent with the expectation based on comparisons with other AGN and GBHs, given its black hole mass and accretion rate.  相似文献   

7.
The most recently celebrated cosmological implications of the cosmic microwave background studies with WMAP (2006), though fascinating by themselves, do, however, create some extremely hard conceptual challenges for the present‐day cosmology. These recent extremely refined WMAP observations seem to reflect a universe which was extremely homogeneous at the recombination age and thus is obviously causally closed at the time of the cosmic recombination era. From the very tiny fluctuations apparent at this early epoch the presently observable nonlinear cosmic density structures can, however, only have grown up, if in addition to a mysteriously high percentage of dark matter an even higher percentage of dark energy is admitted as drivers of the cosmic evolution. The required dark energy density, on the other hand, is nevertheless 120 orders of magnitude smaller then the theoretically calculated value. These are outstanding problems of present day cosmology onto which we are looking here under new auspices. We shall investigate in the following, up to what degree a universe simply abolishes all these outstanding problems in case it reveals itself as an universe of constant total energy. As we shall show basic questions like: How could the gigantic mass of the universe of about 1080 proton masses at all become created? – Why is the presently recognized and obviously indispensable cosmic vacuum energy density so terribly much smaller than is expected from quantum theoretical considerations, but nevertheless terribly important for the cosmic evolution? – Why is the universe within its world horizon a causally closed system? –, can perhaps simply be answered, when the assumption is made that the universe has a constant total energy with the consequence that the total mass density of the universe (matter and vacuum) scales with . Such a scaling of matter and vacuum energy abolishes the horizon problem, and the cosmic vacuum energy density can easily be reconciled with its theoretical expectation values. In this model the mass of the universe increases linearly with the world extension Ru and can grow up from a Planck mass as a vacuum fluctuation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The skeleton formalism, which aims at extracting and quantifying the filamentary structure of our Universe, is generalized to 3D density fields. A numerical method for computing a local approximation of the skeleton is presented and validated here on Gaussian random fields. It involves solving equation     , where  ∇ρ  and     are the gradient and Hessian matrix of the field. This method traces well the filamentary structure in 3D fields such as those produced by numerical simulations of the dark matter distribution on large scales, and is insensitive to monotonic biasing.
Two of its characteristics, namely its length and differential length, are analysed for Gaussian random fields. Its differential length per unit normalized density contrast scales like the probability distribution function of the underlying density contrast times the total length times a quadratic Edgeworth correction involving the square of the spectral parameter. The total length-scales like the inverse square smoothing length, with a scaling factor given by  0.21 (5.28 + n )  where n is the power index of the underlying field. This dependency implies that the total length can be used to constrain the shape of the underlying power spectrum, hence the cosmology.
Possible applications of the skeleton to galaxy formation and cosmology are discussed. As an illustration, the orientation of the spin of dark haloes and the orientation of the flow near the skeleton is computed for cosmological dark matter simulations. The flow is laminar along the filaments, while spins of dark haloes within 500 kpc of the skeleton are preferentially orthogonal to the direction of the flow at a level of 25 per cent.  相似文献   

9.
In this article we want to answer the cosmologically relevant question what, with some good semantic and physical reason, could be called the massM u of an infinitely extended, homogeneously matter‐filled and expanding universe. To answer this question we produce a space‐like sum of instantaneous cosmic energy depositions surrounding equally each spacepoint in the homogeneous universe. We calculate the added‐up instantaneous cosmic energy per volume around an arbitrary space point in the expanding universe. To carry out this sum we use as basic metrics an analogy to the inner Schwarzschild metric applied to stars, but this time applied to the spacepoint‐related universe. It is then shown that this leads to the added‐up proper energy within a sphere of a finite outer critical radius defining the point‐related infinity. As a surprise this radius turns out to be reciprocal to the square root of the prevailing average cosmic energy density. The equivalent mass of the universe can then also be calculated and, by the expression which is obtained here, shows a scaling with this critical radius of this universe, a virtue of the universe which was already often called for in earlier works by E. Mach, H. Thirring and F. Hoyle and others. This radius on the other hand can be shown to be nearly equal to the Schwarzschild radius of the so‐defined mass M u of the universe. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A major recent development in observational cosmology has been an accurate measurement of the luminosity distance–redshift relation out to redshifts z =0.8 from Type Ia supernova standard candles. The results have been argued as evidence for cosmic acceleration. It is well known that this assertion depends on the assumption that we know the equation of state for all mass–energy other than normal pressureless matter; popular models are based either on the cosmological constant or on the more general quintessence formulation. However, this assertion also depends on a number of other assumptions, implicit in the derivation of the standard cosmological field equations: large-scale isotropy and homogeneity, the flatness of the Universe, and the validity of general relativity on cosmological scales (where it has not been tested). A detailed examination of the effects of these assumptions on the interplay between the luminosity distance–redshift relation and the acceleration of the Universe is not possible unless one can define the precise nature of the failure of any particular assumption. However a simple quantitative investigation is possible and reveals a number of considerations about the relative importance of the different assumptions. In this paper we present such an investigation. We find that the relationship between the distant-redshift relation and the sign of the deceleration parameter is fairly robust and is unaffected if only one of the assumptions that we investigate is invalid so long as the deceleration parameter is not close to zero (it would not be close to zero in the currently favoured ΩΛ=1−Ωmatter=0.7 or 0.8 Universe, for example). Failures of two or more assumptions in concordance may have stronger effects.  相似文献   

11.
Voids are a dominant feature of the low-redshift galaxy distribution. Several recent surveys have found evidence for the existence of large-scale structure at high redshifts as well. We present analytic estimates of galaxy void sizes at redshifts   z ∼ 5–10  using the excursion set formalism. We find that recent narrow-band surveys at   z ∼ 5–6.5  should find voids with characteristic scales of roughly 20 comoving Mpc and maximum diameters approaching 40 Mpc. This is consistent with existing surveys, but a precise comparison is difficult because of the relatively small volumes probed so far. At   z ∼ 7–10  , we expect characteristic void scales of ∼14–20 comoving Mpc assuming that all galaxies within dark matter haloes more massive than  1010 M  are observable. We find that these characteristic scales are similar to the sizes of empty regions resulting from purely random fluctuations in the galaxy counts. As a result, true large-scale structure will be difficult to observe at   z ∼ 7–10  , unless galaxies in haloes with masses  ≲109 M  are visible. Galaxy surveys must be deep and only the largest voids will provide meaningful information. Our model provides a convenient picture for estimating the 'worst-case' effects of cosmic variance on high-redshift galaxy surveys with limited volumes.  相似文献   

12.
Exact solutions for a model with variable G,A and bulk viscosity are obtained,Inflationary solutions with constant(de Sitter-type )and variable energy density are found.An expanding anisotropic universe is found to isotropize during its expansion but a static universe cannot isotropize.The gravitational constant is found to increase with time and the cosmological constant decreases with time as A∝t^-2。  相似文献   

13.
We have quantified the average filamentarity of the galaxy distribution in seven nearly two-dimensional strips from the Sloan Digital Sky Survey Data Release Five (SDSS DR5) using a volume-limited sample in the absolute magnitude range  −21 ≤ M r ≤−20  . The average filamentarity of star-forming (SF) galaxies, which are predominantly blue, is found to be more than that of other galaxies which are predominantly red. This difference is possibly an outcome of the fact that blue galaxies have a more filamentary distribution. Comparing the SF galaxies with only the other blue galaxies, we find that the two show nearly equal filamentarity. Separately analyzing the galaxies with high star formation rates (SFR) and low SFR, we find that the latter has a more filamentary distribution. We interpret this in terms of two effects. (i) A correlation between the SFR and individual galaxy properties like luminosity with the high-SFR galaxies being more luminous. (ii) A relation between the SFR and environmental effects like the density with the high-SFR galaxies preferentially occurring in high-density regions. These two effects are possibly not independent and are operating simultaneously. We do not find any difference in the filamentarity of SF galaxies and active galactic nuclei.  相似文献   

14.
We present a detailed statistical study of the observed anisotropy in radio polarizations from distant extragalactic objects. This anisotropy was earlier found by Birch (1982) and reconfirmed by Jain and Ralston (1999) in a larger data set. A very strong signal was seen after imposing the cut , whereRM is the rotation measure and its mean value. In this paper, we show that there are several indications that this anisotropy cannot be attributed to bias in the data. We also find that a generalized statistic shows a very strong signal in the entire data without imposing theRM dependent cut. Finally we argue that an anisotropic background pseudoscalar field can explain the observations.  相似文献   

15.
We derive the Sunyaev–Zel'dovich (SZ) effect arising in radio-galaxy lobes that are filled with high-energy, non-thermal electrons. We provide here quantitative estimates for SZ effect expected from the radio-galaxy lobes by normalizing it to the inverse Compton light, observed in the X-ray band, as produced by the extrapolation to low energies of the radio emitting electron spectrum in these radio lobes. We compute the spectral and spatial characteristics of the SZ effect associated to the radio lobes of two distant radio galaxies (3C 294 and 3C 432) recently observed by Chandra , and we further discuss its detectability with the next generation microwave and submm experiments with arcsec and ∼μK sensitivity. We finally highlight the potential use of the SZ effect from radio-galaxy lobes in the astrophysical and cosmological context.  相似文献   

16.
We use a semi-analytic model of halo formation to study the dynamical history of giant field galaxies like the Milky Way. We find that in a concordance LCDM cosmology, most isolated disk galaxies have remained undisturbed for 8–10 Gyr, such that the age of the Milky Way's thin disk is unremarkable. Many systems also have older disk components which have been thickened by minor mergers, consistent with recent observations of nearby field galaxies. We do have a considerable problem, however, reproducing the morphological mix of nearby galaxies. In our fiducial model, most systems have disk-to-bulge mass ratios of order 1, and look like S0s rather than spirals. This result depends mainly on merger statistics, and is unchanged for most reasonable choices of our model parameters. We discuss two possible solutions to this morphology problem in LCDM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Intense observations of the galactic center since 1992 have revealed the presence of a supermassive object located there, some 26 000 light years from Earth. The mass of the galactic center was determined using time resolved astrometry over a time span of 13 years, from 1992 to present. The observations clearly show that the stars in the immediate vicinity of the supermassive galactic center, denoted as Sagittarius A* (Sgr A*), move along purely Keplerian orbits around Str A*. Observation of the rapidly moving stars permitted astrophysicists to determine a mass for the galactic center of around 3.6 million solar masses. Time resolved images of the Keplerian motions of these stars has exhibited to date no evidence of distortions in the images due to gravitational light bending effects, as predicted by General Relativity. In this paper, a well known tool commonly used by astrophysicists for estimating the effect of gravitation on light rays was examined. The results reveal flaws in the understanding of fundamental principles in mathematical physics applied to gravitational effects on rays of light, as predicted by General Relativity, at the site of a point‐like gravitating masses such as the galactic center mass. Application of the Gauss Law to point‐like gravitating masses shows that a requirement for the colinear alignment of the light source, the lensing and the observer is not necessary for an observation of gravitational lensing as predicted by General Relativity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Supermassive black holes (BHs) obey tight scaling relations between their mass and host galaxy properties such as total stellar mass, velocity dispersion and potential well depth. This has led to the development of self-regulated models for BH growth, in which feedback from the central BH halts its own growth upon reaching a critical threshold. However, models have also been proposed in which feedback plays no role: so long as a fixed fraction of the host gas supply is accreted, relations like those observed can be reproduced. Here, we argue that the scatter in the observed BH–host correlations presents a demanding constraint on any model for these correlations, and that it favours self-regulated models of BH growth. We show that the scatter in the stellar mass fraction within a radius R in observed ellipticals and spheroids increases strongly at small R . At a fixed total stellar mass (or host velocity dispersion), on very small scales near the BH radius of influence, there is an order-of-magnitude scatter in the amount of gas that must have entered and formed stars. In short, the BH appears to 'know more' about the global host galaxy potential on large scales than the stars and gas supply on small scales. This is predicted in self-regulated models; however, models where there is no feedback would generically predict order-of-magnitude scatter in the BH–host correlations. Likewise, models in which the BH feedback in the 'bright' mode does not regulate the growth of the BH itself, but sets the stellar mass of the galaxy by inducing star formation or blowing out a mass in gas much larger than the galaxy stellar mass, are difficult to reconcile with the scatter on small scales.  相似文献   

19.
We have developed an algorithm, called voboz (VOronoi BOund Zones), to find haloes in an N -body dark matter simulation; it has as little dependence on free parameters as we can manage. By using the Voronoi diagram, we achieve non-parametric, 'natural' measurements of each particle's density and set of neighbours. We then eliminate much of the ambiguity in merging sets of particles together by identifying every possible density peak, and measuring the probability that each does not arise from Poisson noise. The main halo in a cluster tends to have a high probability, while its subhaloes tend to have lower probabilities. The first parameter in voboz controls the subtlety of particle unbinding, and may be eliminated if one is cavalier with processor time; even if one is not, the results saturate to the parameter-free answer when the parameter is sufficiently small. The only parameter that remains, an outer density cut-off, does not influence whether or not haloes are identified, nor does it have any effect on subhaloes; it only affects the masses returned for supercluster haloes.  相似文献   

20.
This paper discusses the first all-sky surveys of cosmic extreme ultra-violet and soft X-ray sources, discovered by ROSAT. Details of the surveys are presented, with comparisons made to previous selected surveys in the X-ray regime. The subsequent optical identification programs are described, and the major results summarized. We then discuss the main classes of EUV emitters: active chromosphere stars and hot white dwarfs, and describe the importance of EUV observations in understanding the astrophysics of these objects. Many bright, and relatively nearby, sources have been identified as hitherto unrecognized active stars, representing the extremes in chromospheric and coronal activity, be it binary or age related. Many new hot DA white dwarfs have also been indentified, and the most exciting result in this area is the discovery that significant traces of heavier elements (e.g. C, N, O, Si, Fe and Al) exist in their atmospheres, substantially increasing their EUV opacities. The importance of hot white dwarfs as standard candles in probing the local interstellar medium is also discussed. Miscellaneous counterparts (AGN, PNN, O-B stars and CVs) that make up the rest of the sample of EUV sources are also briefly mentioned. We finish with a discussion of the on-going ROSAT Galactic Plane Survey (RGPS) identification program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号