首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植被变化对西北地区陆气耦合强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
西北地区地处欧亚大陆腹地,生态系统对于气候变化和人为影响十分敏感,同时该区也是湿润的东亚季风区与干燥的中亚干旱区的过渡区域,陆气相互作用比较强烈.本文对西北地区植被变化对当地的陆气耦合强度及其与之相关的地表水文过程的影响进行了分析研究,并且找出适于增加植被以缓解西北地区荒漠化趋势的最具成效的地区.本文利用美国国家大气科学研究中心(NCAR,National Center for Atmospheric Research)研制的通用大气模式CAM3(Community Atmosphere Model Version 3)对西北地区植被变化的影响进了数值模拟.本文共设计了三个试验,使用正常地表植被覆盖的参考试验,地表下垫面变为裸土的去植被试验和植被增加的生态环境好转试验.首先,本文对西北地区植被变化对于当地降水量、地表水分盈余量、径流量、地表土壤含水量等地表水文变量的影响进行了分析研究.然后对西北地区植被变化对当地的陆气耦合强度的影响进了分析研究,陆气耦合强度是衡量局地陆气相互作用强弱程度的一个新标准,基于计算年降水量与蒸散量的协方差与降水量方差之比而得到.它利用观测数据或模式输出数据,计算起来简便容易,物理意义明确清晰,陆气相互作用越强烈的地区,其陆气耦合强度也越高.最后,本文计算了一个蒸散-水汽通量散度指数来衡量植被变化对局地蒸散与大气水汽通量散度的影响,其在一定程度上反应了植被变化对局地陆气相互作用和大尺度大气环流输送作用的影响,也可以视为一个评估人为生态环境工程效果的指标.西北地区陆气耦合强度由东南向西北递增.去植被之后,西北地区降水与蒸发普遍减少,其中在东南部区域,地表径流增加约10~40mm,渗流量与地表土壤含水量分别减少约40~80mm和5~20mm3·mm-3,陆气耦合强度上升,这有可能导致水土流失,不利于当地植被的恢复.生态环境好转之后,内陆地区降水与蒸发明显增加,但地表盈余水分有所减少,主要原因是蒸散量相较于降水量增加的更多.其中在沙漠戈壁区边缘的新疆南部与内蒙西部,渗流量与地表土壤含水量分别上升约5~20mm和5~20mm3·mm-3,陆气耦合强度降低,蒸散-水汽通量散度指数较高,这可能主要是由于植被变化对局地陆气相互作用的改变而造成的.植被对于西北地区地表水文过程有着明显的影响,植被的存在能加速西北地区地表水文循环过程,减小陆面蒸散的变化,降低陆气耦合强度.在有限的人力与财力条件下,集中力量在在沙漠戈壁区边缘的新疆南部与内蒙西部适当种植灌木与青草并防止过度放牧,能有效降低当地陆气耦合强度,缓解西北地区荒漠化加剧的趋势.本文下一步还需考虑如模式地表植被数据与真实情况的差异性,海洋因素变化对于植被变化的反馈,以及进行集合实验来增加研究结果的可靠性.  相似文献   

2.
We use Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data to estimate spatial energy flux and evaporation distributions at the Salar de Atacama, a playa in Northern Chile. Our approach incorporates ASTER surface kinetic temperature, emissivity, and reflectance data, ground-based meteorological measurements, and empirical parameters. Energy flux distributions are estimated using either spatially constant or spatially distributed values of model parameters, with spatially distributed parameters assigned separately to each land cover category in an image classification. We test the sensitivity of energy budget calculations to state variable and parameter values by conducting Monte Carlo simulations for regions with ground energy budget measurements. Results show that assigning spatially distributed model parameters via land cover classifications yields significant improvements to ground and sensible heat flux predictions. Latent heat fluxes cannot, however, be predicted with sufficient accuracy to allow estimation of area-integrated evaporative moisture loss at this low-evaporation playa.  相似文献   

3.
It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental-scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non-negligible contribution of lateral terrestrial water flow to precipitation at continental scale.  相似文献   

4.
The MUREX (monitoring the usable soil reservoir experimentally) experiment was designed to provide continuous time series of field data over a long period, in order to improve and validate the Soil-vegetation-Atmosphere Transfer (SVAT) parameterisations employed in meteorological models. Intensive measurements were performed for more than three years over fallow farmland in southwestern France. To capture the main processes controlling land-atmosphere exchanges, the local climate was fully characterised, and surface water and energy fluxes, vegetation biomass, soil moisture profiles, surface soil moisture and surface and soil temperature were monitored. Additional physiological measurements were carried out during selected periods to describe the biological control of the fluxes. The MUREX data of 1995, 1996, and 1997 are presented. Four SVAT models are applied to the annual cycle of 1995. In general, they succeed in simulating the main features of the fallow functioning, although some shortcomings are revealed.  相似文献   

5.
A land surface hydrology parameterization for use in atmospheric GCMs is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large scale parameterizations: water balance calculations are performed for a number of intervals of the topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well at the dynamics of land surface-atmosphere interactions.  相似文献   

6.
Various remote‐sensing methods are available to estimate soil moisture, but few address the fine spatial resolutions (e.g. 30‐m grid cells) and root‐zone depth requirements of agricultural and other similar applications. One approach that has been previously proposed to estimate fine‐resolution soil moisture is to first estimate the evaporative fraction from an energy balance that is inferred from optical and thermal remote‐sensing images [e.g. using the Remote Sensing of Evapotranspiration (ReSET) algorithm] and then estimate soil moisture through an empirical relationship to evaporative fraction. A similar approach has also been proposed to estimate the degree of saturation. The primary objective of this study is to evaluate these methods for estimating soil moisture and degree of saturation, particularly for a semi‐arid grassland with relatively dry conditions. Soil moisture was monitored at 28 field locations in south‐eastern Colorado with herbaceous vegetation during the summer months of 3 years. In situ soil moisture and degree of saturation observations are compared with estimates calculated from Landsat imagery using the ReSET algorithm. The in situ observations suggest that the empirical relationships with evaporative fraction that have been proposed in previous studies typically provide overestimates of soil moisture and degree of saturation in this region. However, calibrated functions produce estimates with an accuracy that may be adequate for various applications. The estimates produced by this approach are more reliable for degree of saturation than for soil moisture, and the method is more successful at identifying temporal variability than spatial variability in degree of saturation for this region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Bouchet in 1963 hypothesized that for large homogeneous land surface with minimum advection of heat and moisture, there exists a 1:1 complementary relationship of potential and actual evaporation coupled through land-atmosphere feedbacks. The complementary relationship has been widely used to estimate regional actual evaporation and explain the pan evaporation paradox. We examine the standardized potential evaporation (potential evaporation divided by wet environment evaporation) at 102 observatories at different elevations across China. Generally, the relationship is appropriate at the low elevations (<1000 m). With the increase of elevation, vapor transfer power becomes much less than radiation energy budget because of lower vapor pressure deficit and stronger global solar radiation. As a result, at the high elevations (over 1000 m), the excess energy resulted by limited moisture availability is not enough to be converted into drying power of the air. This result suggests that the complementary relationship is asymmetric at the high elevations. Supported by the Presidential Special Award Foundation, the Chinese Academy of Sciences (Grant No. O7R70020SD) and the National Key Technology R & D Program (Grant No. 2006BAC08B0408)  相似文献   

8.
Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well‐developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
John Houston   《Journal of Hydrology》2006,330(3-4):402-412
The Atacama Desert is hyper-arid, and areas where adequate moisture exists for evaporation are spatially highly restricted. Nevertheless, water resources exist and their evaluation requires knowledge of this elusive but important component of the hydrological cycle. Evaporation may occur in four typical areas: rivers and associated riparian zones, localized springs, large playas and extensive areas of bare soil after infrequent precipitation events. Transpiration is locally possible where moisture is sufficiently close to the surface to allow phreatophytes or scarce grass cover to grow, but virtually no information is available for quantification. Pan evaporation data from 11 stations for the period 1977–1991 is analyzed and complemented by analysis of an evaporation study conducted in the Salar de Atacama during 1987/1988. The results show that pan evaporation, and hence maximum potential evaporation may be considered largely a function of maximum temperature and elevation as well as density of the evaporating fluid. Actual evaporation is limited by available moisture and diminishes rapidly as the level of soil moisture saturation drops below the soil surface, extinguishing at ca. 2 m depth. Evaporation is greatest during the summer, but at higher elevations convective cloudiness develops during January and February reducing evaporating rates at a time when significant precipitation may occur. Inter-annual variations in pan evaporation are considerable and weakly correlated with ENSO, but variations in actual evaporation are damped by comparison. Regression equations are developed which have widespread applicability and may be used to estimate evaporation in areas where no site-specific data exists.  相似文献   

10.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

11.
Numerous land surface models exist for predicting water and energy fluxes in the terrestrial environment. These land surface models have different conceptualizations (i.e., process or physics based), together with structural differences in representing spatial variability, alternate empirical methods, mathematical formulations and computational approach. These inherent differences in modeling approach, and associated variations in outputs make it difficult to compare and contrast land surface models in a straight-forward manner. While model intercomparison studies have been undertaken in the past, leading to significant progress on the improvement of land surface models, additional framework towards identification of model weakness is needed. Given that land surface models are increasingly being integrated with satellite based estimates to improve their prediction skill, it is practical to undertake model intercomparison on the basis of soil moisture data assimilation. Consequently, this study compares two land surface models: the Joint UK Land Environment Simulator (JULES) and the Community Atmosphere Biosphere Land Exchange (CABLE) for soil moisture estimation and associated assessment of model uncertainty. A retrieved soil moisture data set from the Soil Moisture and Ocean Salinity (SMOS) mission was assimilated into both models, with their updated estimates validated against in-situ soil moisture in the Yanco area, Australia. The findings show that the updated estimates from both models generally provided a more accurate estimate of soil moisture than the open loop estimate based on calibration alone. Moreover, the JULES output was found to provide a slightly better estimate of soil moisture than the CABLE output at both near-surface and deeper soil layers. An assessment of the updated membership in decision space also showed that the JULES model had a relatively stable, less sensitive, and more highly convergent internal dynamics than the CABLE model.  相似文献   

12.
The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.  相似文献   

13.
Soil moisture plays a significant role in land-atmosphere interactions. Changing fractions of latent and sensible heat fluxes caused by soil moisture variations can affect near-surface air temperature, thus influencing the oasis's cooling effect in arid regions. In this study, the framework for the evaporative fraction (EF) dependence on soil moisture is used to analyse the impacts of soil moisture variation on near-surface air temperature and the oasis effect. The result showed that soil moisture's contribution rate to EF was significantly higher than that of EF to temperature. Under the interaction of temperature sensitivity to EF and EF to soil moisture, the ∂T/∂ϴ presented a similar tempo-spatial variation with both of the above. It was most significant in oasis areas during summer (−1.676), while it was weaker in plain desert areas during the autumn (−0.071). In the study region, the effect of soil moisture variation on air temperature can reach 0.018–0.242 K for different land-cover types in summer. The maximum variation of soil moisture in summer can alter air temperature by up to 0.386 K. The difference in temperature variability between the oasis and desert areas promoted the formation of the oasis effect. For different oasis, the multi-year average oasis cold effect index (OCI) ranged from −1.36 to −0.26 K. In comparison, the average summer OCI ranged from −1.38 to −0.29 K. The lower bound of the cooling effect of oasis ranged from −4.97 to −1.69 K. The analysis framework and results of this study will provide a new perspective for further research on the evolution process of the oasis effect and water–heat balance in arid areas.  相似文献   

14.
《水文科学杂志》2013,58(4):642-654
Abstract

Soil moisture estimates obtained over large spatial areas will become increasingly available through current and upcoming satellite missions and from numerous land surface parameterization schemes run at global- and continental-scale resolutions. The goal of this research was to evaluate the potential for using macroscale estimates of soil moisture for enhancing streamflow forecasts. Towards this research objective, monthly streamflow estimates were obtained from over 50 gauge locations within the Nelson basin, Canada, for the period 1979–1999. For each streamflow record, multiple linear regression models were used to remove components of the streamflow signal related to previous streamflow, climate teleconnections (e.g. ENSO and AO) and snow water equivalence. Correlations were then assessed between the macroscale soil moisture estimates and the residuals of the multiple linear regression analysis over lead times of one, two and three months. At the one- and two-month lead time, statistically significant relationships between soil moisture and the residuals of streamflow are observed over a large proportion of the gauging locations. The number of catchments with statistically significant relationships decreases significantly after two months and particularly in the months of April—June. This study demonstrates that available macroscale estimates of soil moisture have the potential to enhance streamflow prediction, although further study is suggested to improve upon the soil moisture estimates and their application in a forecast system.  相似文献   

15.
The crucial role of root-zone soil moisture is widely recognized in land–atmosphere interaction, with direct practical use in hydrology, agriculture and meteorology. But it is difficult to estimate the root-zone soil moisture accurately because of its space-time variability and its nonlinear relationship with surface soil moisture. Typically, direct satellite observations at the surface are extended to estimate the root-zone soil moisture through data assimilation. But the results suffer from low spatial resolution of the satellite observation. While advances have been made recently to downscale the satellite soil moisture from Soil Moisture and Ocean Salinity (SMOS) mission using methods such as the Disaggregation based on Physical And Theoretical scale Change (DisPATCh), the assimilation of such data into high spatial resolution land surface models has not been examined to estimate the root-zone soil moisture. Consequently, this study assimilates the 1-km DisPATCh surface soil moisture into the Joint UK Land Environment Simulator (JULES) to better estimate the root-zone soil moisture. The assimilation is demonstrated using the advanced Evolutionary Data Assimilation (EDA) procedure for the Yanco area in south eastern Australia. When evaluated using in-situ OzNet soil moisture, the open loop was found to be 95% as accurate as the updated output, with the updated estimate improving the DisPATCh data by 14%, all based on the root mean square error (RMSE). Evaluation of the root-zone soil moisture with in-situ OzNet data found the updated output to improve the open loop estimate by 34% for the 0–30 cm soil depth, 59% for the 30–60 cm soil depth, and 63% for the 60–90 cm soil depth, based on RMSE. The increased performance of the updated output over the open loop estimate is associated with (i) consistent estimation accuracy across the three soil depths for the updated output, and (ii) the deterioration of the open loop output for deeper soil depths. Thus, the findings point to a combined positive impact from the DisPATCh data and the EDA procedure, which together provide an improved soil moisture with consistent accuracy both at the surface and at the root-zone.  相似文献   

16.
Partial analysis is applied to the problem of predicting the moisture fluxes of infiltraton and evaporation at land surfaces. The discussion covers the widely different scales of the soil particle, a soil pedon, a field, a basin and a biome. It is suggested that simplified models can be used at these different scales to provide bounding solutions to the integrated behaviour of land surface fluxes of interest in linking hydrologic models and general circulation climate models.  相似文献   

17.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

18.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

19.
Soil moisture has a fundamental influence on the processes and functions of tundra ecosystems. Yet, the local dynamics of soil moisture are often ignored, due to the lack of fine resolution, spatially extensive data. In this study, we modelled soil moisture with two mechanistic models, SpaFHy (a catchment-scale hydrological model) and JSBACH (a global land surface model), and examined the results in comparison with extensive growing-season field measurements over a mountain tundra area in northwestern Finland. Our results show that soil moisture varies considerably in the study area and this variation creates a mosaic of moisture conditions, ranging from dry ridges (growing season average 12 VWC%, Volumetric Water Content) to water-logged mires (65 VWC%). The models, particularly SpaFHy, simulated temporal soil moisture dynamics reasonably well in parts of the landscape, but both underestimated the range of variation spatially and temporally. Soil properties and topography were important drivers of spatial variation in soil moisture dynamics. By testing the applicability of two mechanistic models to predict fine-scale spatial and temporal variability in soil moisture, this study paves the way towards understanding the functioning of tundra ecosystems under climate change.  相似文献   

20.
Many of the relationships used in coupled land–atmosphere models to describe interactions between the land surface and the atmosphere have been empirically parameterized and thus are inherently dependent on the observational scale for which they were derived and tested. However, they are often applied at scales quite different than the ones they were intended for due to practical necessity. In this paper, a study is presented on the scale-dependency of parameterizations which are nonlinear functions of variables exhibiting considerable spatial variability across a wide range of scales. For illustration purposes, we focus on parameterizations which are explicit nonlinear functions of soil moisture. We use data from the 1997 Southern Great Plains Hydrology Experiment (SGP97) to quantify the spatial variability of soil moisture as a function of scale. By assuming that a parameterization keeps its general form the same over a range of scales, we quantify how the values of its parameters should change with scale in order to preserve the spatially averaged predicted fluxes at any scale of interest. The findings of this study illustrate that if modifications are not made to nonlinear parameterizations to account for the mismatch of scales between optimization and application, then significant systematic biases may result in model-predicted water and energy fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号