首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

2.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

3.
A large landslide on the urban fringe of metropolitan Phoenix, Arizona   总被引:2,自引:1,他引:2  
A granitic rock avalanche, one of the largest Quaternary landslides in Arizona outside the Grand Canyon with a volume of approximately 5.25 M m3 and a width a little under 0.5 km, ran 1 km from the eastern McDowell Mountains. With lateral levees and pressure ridges, the rock avalanche deposit displays many features found on classic sturzstroms. Failure occurred along a major joint plane paralleling the slope with a dip of 44°, when a major base level lowering event in the Salt River system would have undermined the base of the failed slope, and probably during a period of more moisture than normally available in the present-day arid climate. Failure at the subsurface weathering front highlights the importance of the dramatic permeability change between grussified regolith and relatively fresh bedrock. Rock varnish microlaminations (VMLs) dating, in concert with other geomorphic evidence, suggests that the rock avalanche deposit is slightly older than 500 ka. The rock vanish results also have important implications for sampling strategies designed to use cosmogenic nuclide to date Quaternary landslide deposits. Discovery of a large landslide in close proximity to the extending urban fringe of metropolitan Phoenix argues for a more careful analysis of landslide hazards in the region, especially where rapid development excavates bedrock at the base of steep mountain slopes and where the subsurface weathering front is near the surface.  相似文献   

4.
Chinese historic documents recorded that on June 1, 1786, a strong M=7.75 earthquake occurred in the Kangding-Luding area, Sichuan, southwestern China, resulting in a large landslide that fell into the Dadu River. As a result, a landslide dam blocked the river. Ten days later, the sudden breaching of the dam resulted in catastrophic downstream flooding. Historic records document over 100,000 deaths by the flood. This may be the most disastrous event ever caused by landslide dam failures in the world. Although a lot of work has been carried out to determine the location, magnitude and intensity of the 1786 earthquake, relatively little is known about the occurrence and nature of the landslide dam. In this paper, the dam was reconstructed using historic documents and geomorphic evidence. It was found that the landslide dam was about 70 m high, and it created a lake with a water volume of about 50×106 m3 and an area of about 1.7 km2. The landslide dam breached suddenly due to a major aftershock on June 10, 1786. The peak discharge at the dam breach was estimated using regression equations and a physically based predictive equation. The possibility of a future failure of the landslide seems high, particularly due to inherent seismic risk, and detailed geotechnical investigations are strongly recommended for evaluating the current stability of the landslide.  相似文献   

5.
The Jiufengershan rock and soil avalanche is one of the largest landslides triggered by the Chi-Chi earthquake Taiwan 1999. The landslide destabilized the western limb of the Taanshan syncline along a weak stratigraphic layer. It involved a flatiron remnant, which was almost entirely mobilized during the earthquake. The avalanche was slowed down by NS trending ridges located downstream along the Jiutsaihu creek. The landslide affected a 60 m thick and 1.5 km long sedimentary pile composed of shales and sandstones, which dip 22°SE toward a transverse valley. The triggering mechanism and the sliding process were analyzed by means of geological and morphological data from aerial photographs and observed in the field. A high-resolution airborne Light Detection and Ranging (LiDAR) image taken 2.5 years after the landslide allows the identification of morphological structures along the sliding surface and the landslide accumulation. The sliding surface shows several deformation structures such as fault scarps and folds. These structures are interpreted in terms of basal shear stresses created during the avalanche. Three major joint sets were identified at the sliding surface. The isopach map of the landslide was calculated from the comparison between elevation models before and after the earthquake. The coseismic volume of mobilized material and landslide deposit data are 42 × 106 m3 and 50 × 106 m3, respectively. The geometry of the landslide accumulation in the field has an irregular star shape. The morphology of the deposit area shows a sequence of smooth reliefs and depressions that contrast with the neighboring ridges.  相似文献   

6.
The Inylchek glacier system in Central Tian Shan, Kyrgyzstan, comprises a large glacier‐dammed lake which usually drains once a year through a subglacial drainage system. Detailed GPS measurements on the ice dam and the analysis of Aster scenes from several subsequent years provide insight into the post‐drainage dam response and the changed ice dynamic conditions. We demonstrate that during high water levels in the lake a large part of the ice dam is afloat, lifting the ice surface up to almost 20 m in the central dam region. During this phase of extensive flotation strong calving is facilitated, which is supported by the high density of ice debris in the lake. In general, surface ice velocities are about 1.5‐2 times higher during summer than winter. Closer to the lake, however, ice velocities increase considerably after the drainage event, showing values more than three times the annual mean. The increased mass flux during the phase of high lake level needs to be compensated by replenishment of the lost ice from the dam. Therefore the ice velocities show compressive flow during the remaining part of the year. These results show that Southern Inylchek glacier is strongly influenced by the existence of the lake.  相似文献   

7.
The well preserved and undissected Columbia Mountain landslide, which is undergoing suburban development, was studied to estimate the timing and processes of emplacement. The landslide moved westward from a bedrock interfluve of the northern Swan Range in Montana, USA onto the deglaciated floor of the Flathead Valley. The landslide covers an area of about 2 km2, has a toe-to-crown height of 1100 m, a total length of 3430 m, a thickness of between 3 and 75 m, and an approximate volume of 40 million m3. Deposits and landforms define three portions of the landslide; from the toe to the head they are: (i) clast-rich diamictons made up of gravel-sized angular rock fragments with arcuate transverse ridges at the surface; (ii) silty and sandy deposits resting on diamictons in an internally drained depression behind the ridges; and (iii) diamictons containing angular and subangular pebble-to block-sized clasts (some of which are glacially striated) in an area of lumpy topography between the depression and the head of the landslide. Drilling data suggest the diamictons cover block-to-slab-sized bedrock clasts that resulted from an initial stage of the failure.The landslide moved along a surface that developed at a high angle to the NE-dipping, thinly bedded metasediments of the Proterozoic Belt Supergroup. The exposed slope of the main scarp dips 30–37°W. A hypothetical initial rotational failure of the lower part of a bedrock interfluve may have transported bedrock clasts into the valley. The morphology and deposits at the surface of the landslide indicate deposition by a rock avalanche (sturzstrom) derived from a second stage of failure along the upper part of the scarp.The toe of the Columbia Mountain landslide is convex-west in planview, except where it was deflected around areas now occupied by glacial kettles on the north and south margins. Landsliding, therefore, occurred during deglaciation of the valley while ice still filled the present-day kettles. Available chronostratigraphy suggests that the ˜1-km thick glacier in the region melted before 12,000 14C years BP—within 3000 years of the last glacial maximum. Deglaciation and hillslope failure are likely causally linked. Failure of the faceted interfluve was likely due tensile fracturing of bedrock along a bedding-normal joint set shortly after glacial retreat from the hillslope.Open surficial tension fractures and grabens in the Swan Range are limited to an area above the crown of the landslide. Movement across these features suggests that extensional flow of bedrock (sackung) is occurring in what remains of the ridge that failed in the Columbia Mountain landslide. The fractures and grabens likely were initiated during failure, but their morphologies suggest active extension across some grabens. Continued movement of bedrock above the crown may result in future mass movements from above the previous landslide scarp. Landslides sourced from bedrock above the scarp of the late-glacial Columbia Mountain landslide, which could potentially be triggered by earthquakes, are geologic hazards in the region.  相似文献   

8.
川西北高原山地灾害垂直地带性   总被引:2,自引:0,他引:2  
由于形成山地灾害的多种自然因素具有垂直地带性,尤其作为主要动力因素的水,超过一定高度后由液态成为固态,从而也造成了山地灾害的垂直地带性,从高到低可分为冰雪型、冻融型和流水(含地下水)型等三个山地灾害垂直带,高低两带之间主体界线在川西北高原地区为4900m和3500m。各带均有其特有的山地灾害,其中冰雪型山地灾害主要有冰崩、雪崩、冰面湖崩决等;冻融型山地灾害有冻融土流、冻融滑塌、冻融坍塌、融冻泥流、寒冻岩屑流和冰湖溃决等;流水型山地灾害有滑坡、崩塌、泥石流、山洪、泥石流坝和滑坡坝溃决等。认清这些灾害分布的垂直地带性,对于在相应地带进行资源开发和经济建设时,避免、减轻或妥善处治其危害具有重要的现实意义。  相似文献   

9.
陶波  李锋  马威  刘建雄  易守勇 《热带地理》2022,42(10):1761-1770
采用工程地质钻探、物探、地质测绘及室内试验等技术方法探讨飞鹅山Ⅲ号滑坡形成机理与防治技术。结果表明:1)滑坡体主要岩性为泥质粉砂岩,飞鹅山滑坡属于新形成的深层中型牵引式滑坡,在平面上呈圈椅状。2)滑坡属于双层滑面滑坡,主滑面以中型深层滑坡为主,主滑体上部发育中型中厚层滑坡。3)滑坡产生的原因为:(1)泥质粉砂岩倾向与坡向基本一致,且岩层倾角为中等倾角;(2)人工开挖使坡脚形成高陡临空面,抗滑力大为降低;(3)雨水沿层面及节理裂隙入渗至坡体深部,大大增加岩土体容重,同时泥质粉砂岩遇水软化,抗剪强度显著降低。4)结合该滑坡区地质环境条件,采用坡面削坡+锚杆(索)+格构梁+双排预应力锚拉抗滑桩+三维网植草绿化+截排水+毛石挡墙的综合治理方法进行防治,监测结果显示该滑坡变形及位移已得到有效控制,整治效果良好。  相似文献   

10.
Rockfall avalanches are commonly associated with the alpine regions of Europe, South America and north‐western Canada, but modern examples have only been reported very recently in Australia (Pells et al. 1987). The Nattai North rockfall avalanche is located on the Burragorang Walls escarpment in the sandstone landscape of the Sydney Basin. The volume of rock involved in the failure had sufficient magnitude to enable the resulting mass of debris to flow in the manner of a semiviscous fluid. The conventional models of rockslope evolution, involving undercutting followed by blockfalls, do not apply at this site. Indeed these models do not apply to most of the large‐scale rock collapses in the Sydney Basin. All such rockfalls have occurred in the vicinity of underground coal mines. Coal mining has affected the stability of nearby escarpments by altering stress distributions within the rock mass. The subsequent failures are typically larger and of a different form than those occurring naturally.  相似文献   

11.
Mass failure deposits in lacustrine settings are some of the most understudied facies associations in the ancient or modern rock record. We integrated seismic data and well logs to investigate the external morphology, internal architecture and deformation and reservoir distribution of the sublacustrine landslides in the Cretaceous Nengjiang Formation of the Songliao Basin (SLB). A large‐scale sublacustrine landslide, named the Qi‐Jia sublacustrine landslide (QJSL), has been identified in the Nengjiang Formation of the SLB. The QJSL is currently the largest known sublacustrine landslide in the world. This landslide covers an area that exceeds 300 km2, with an estimated volume of 30 km3. Seismic imaging and mapping reveal that the QJSL can be recognized by several distinguishing seismic characteristics: discontinuous and internal chaotic seismic facies, compressional structures in the downslope region, irregular top and basal surfaces and erosional grooves in basal shear surfaces. The QJSL is 20–200 m thick, and is composed of a succession of fine‐grained deposits. Sandy layers are present but sparse and thinner than 16 m, and form reservoirs of the petroleum discoveries in this area. Our analyses show that the mechanism that triggered the collapse of the QJSL is attributed to rapid deposition and deltaic progradation. This study demonstrates that sand‐rich sublacustrine landslides formed at delta front slope can serve as conventional reservoirs in the lake centre, and provide a new target for subaqueous hydrocarbon exploration and development.  相似文献   

12.
Glacier mass balance is more sensitive to warming than cooling, but feedbacks related to the exposure of previously buried firn and ice in very warm years is not generally considered in sensitivity studies. A ground‐penetrating radar survey in the accumulation area of Rolleston Glacier, New Zealand shows that five years of previous net accumulation was removed by melt from parts of the glacier above the long‐term equilibrium line altitude during a single negative mass balance year. Rolleston Glacier receives a large amount of accumulation from snow avalanches, which may temporarily buffer it from climate warming by providing additional mass that has accumulated at higher elevations, effectively increasing the elevation range of the glacier. However, glaciers reliant on avalanche input may have high sensitivity to climatic variations because the extra mass is concentrated on a small part of the glacier, and small variations in avalanche input could have a large impact on overall glacier accumulation. Further research is needed to better estimate the amount and spatial distribution of accumulation by avalanche in order to quantify the climate sensitivity of small avalanche‐fed glaciers.  相似文献   

13.
汉源县大渡河“8.6”崩塌堵河灾害研究   总被引:2,自引:0,他引:2  
2009-08-06四川省汉源县顺河乡猴子岩发生大型崩塌,90余万m~3崩塌体直接冲进大渡河,形成40 m高的堰塞坝,阻断大渡河,形成库容达6 000×10~4 m~3堰塞湖,导致2人死亡,29人失踪和重大财产损失.以现场调查与观测为基础,分析灾害发育条件和成灾过程,认为高陡边坡次级断裂造成的岩体破裂是崩塌发育的基础条件,"5.12"汶川大地震、强降雨及道路工程建设造成的边坡失稳是灾害发生的重要原因.针对崩塌堵河灾害的成灾特点,提出加强山区重大工程区地质灾害评价、预防、预警,科学设计、施工减少陡坡开挖,采取果断措施处置施工过程中出现的险情、灾情,及时在灾害点设置警示标志减少灾害损失等减灾对策.  相似文献   

14.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

15.
16.
Providence Canyon, one of a series of large gullies in the upper Coastal Plain of the southeastern United States, formed as a result of deforestation and agricultural development in the early 1800's. Sediment eroded from the canyon aggraded the floodplain downstream, dammed tributary valleys, and formed North and South Glory Hole lakes (NGH, 4.8 ha and SGH, 2.5 ha). Sedimentary sequences in these lakes include a basal unit (I) of layered sand and clayey-sand overlain by 0.05-0.1 m of mud, fine sand and organic matter, with large fragments of wood (Unit IIa). An upper unit (IIb) 0.29-1.61 m thick consists of silt and clay containing discrete layers of sand. We interpret Unit I as floodplain alluvium deposited before the lakes were dammed, Unit IIa as sediment deposited during the early phase of the lakes when detritus from trees killed by flooding was abundant, and Unit IIb as lacustrine mud deposited after lake levels stabilized, with periodic pulses of sand eroded from Providence Canyon introduced to the lake by backflooding events. Basal dates extrapolated from a 210Pb chronology for the upper part of SGH core suggests that development of the canyon and formation of the lakes began in the 1840's, and that lake levels stabilized by about 1880. Although consistent with historical accounts of the age of Providence Canyon, these dates must be considered as approximate because of uncertainty in extrapolating dates to the bottom of the core.In contrast, the 210Pb chronology for the upper portion of the core (post 1930) is validated independently using historical climatic records, and indicates that lacustrine sedimentation faithfully records recent land-use change visible in historical aerial photography. An 8-fold increase in lacustrine sedimentation occurred after the clearing of forest near SGH in the 1930's and 1940's, and a 1.5-fold increase occurred because of road construction in the l950's. Individual sand layers deposited between 1830 and 1957 correlate with erosion at Providence Canyon during major storm events. Since then, downcutting and headward incision by the stream draining Providence Canyon have reduced backflooding to the Glory Hole lakes. As a result, the thickness of individual sand layers decreased, although increases in mass sedimentation rates for mud correspond more directly with large precipitation events after channel incision cut off the major source of sediment from Providence Canyon. The results of this study illustrate the value of the lacustrine sedimentary record in assessing geomorphic, climatic, and human-induced environmental change in heavily disturbed landscapes.  相似文献   

17.
不同成因类型堰塞湖的应急处置措施比较   总被引:1,自引:0,他引:1  
在对堰塞湖所造成的危害和成因类型分析的基础上,将堰塞湖分为:滑坡型堰塞湖、崩塌型堰塞湖和泥石流型堰塞湖,并对这三种类型堰塞湖所具有的特征和采取的应急处置措施进行了比较.对于不同成因类型、不同特征的堰塞湖,都要在尽可能降低堰塞湖危害的前提下,充分考虑各种因素、因地制宜的选取应急处置方式.  相似文献   

18.
During the deglaciation stages of the last glacial period a rock avalanche took place on the glacier that occupied the upper sector of the Cuerpo de Hombre Valley (Sierra de Béjar). The material displaced during the avalanche fell onto the ice, was transported by the glacier and later deposited as supraglacial ablation till. The cause of the avalanche was the decompression of the valley slopes after they were freed from the glacier ice (stress relaxation). Reconstruction of the ice masses has been carried out to quantify the stress relaxation that produced the collapse. The rock avalanche took place on a lithologically homogeneous slope with a dense fracture network. The avalanche left a 0.4 ha scar on the slope with a volume of displaced material of 623 ± 15 × 103 m3. The deposit is an accumulation of large, angular, heterometric boulders (1–100 m3 in volume) with a coarse pebble‐size matrix. The avalanche can be explained as a relaxation process. This implies rock decompression once the glacier retreat left the wall ice free (debuttressing). Calculations show that the avalanche took place where the decompression stresses were highest (130–170 kPa). In the Spanish Central System paleoglaciers the largest accumulation of morainic deposits occurred after the glacial maximum and the earliest stages of the ice retreat. The process described here is used as an example to formulate a hypothesis that the largest accumulations of tills were formed in relation to enhanced slope dynamics once some glacier retreat had occurred.  相似文献   

19.
The catchment of the River Partnach, a torrent situated in a glacial valley in the Northern Calcareous Alps of Bavaria/Germany, was affected by a high‐magnitude flood on 22/23 August 2005 with a peak discharge of more than 16 m3s‐1 at the spring and about 50 m3s‐1 at the catchment outlet. This flood was caused by a long period of intense rainfall with a maximum intensity of 230 mm per day. During this event, a landslide dam, which previously held a small lake, failed. The flood wave originating from the dam breach transported a large volume of sediment (more than 50 000 m3) derived from bank erosion and the massive undercutting of a talus cone. This caused a fundamental transformation of the downstream channel system including the redistribution of large woody debris and channel switching. Using terrestrial survey and aerial photography, erosional and depositional consequences of the event were mapped, pre‐ and post‐event surfaces were compared and the sediment budget of the event calculated for ten consecutive channel reaches downstream of the former lake. According to the calculations more than 100 000 tonnes of sediment were eroded, 75% of which was redeposited within the channel and the proximal floodplain. A previous large flood which occurred a few weeks prior to the August 2005 event had a significant effect on controlling the impact of this event.  相似文献   

20.
An unusual assemblage of landforms and deposits is described from upper Norangsdalen, Sunnmøre region, southern Norway, and interpreted as the product of snow‐avalanche events that vary in magnitude, frequency and debris content. An avalanche impact plunge pool, proximal scar and distal mound are associated with a coarse gravel deposit covering part of the valley floor. Landforms in this debris spread include gravel ridges, boulder lines, beaded ridges, fine sediment banked against and covering large boulders, and gravel clumps. Many of these landforms are aligned, indicating across‐valley transport radiating from the plunge pool. Features were mapped in the field and samples analysed for grain size and heavy‐mineral content. The debris spread is attributed to deposition by high‐energy, debris‐rich snow‐avalanche events that collect debris from large areas of the valley side, lower slopes and plunge pool. Aligned landforms develop through sediment transport in a basal shear zone, and randomly distributed gravel clumps represent melt pits following debris transport in the avalanche body. Air displacement ahead of larger avalanches is thought to have felled and tilted trees on the lower slopes of the distal valley side. Approximate ages of damaged trees allowed estimation of the frequency of snow‐avalanche events: (1) small, frequent events (several per annum) carry debris to the lower valley slopes and the plunge pool; (2) moderate events with an annual to decadal frequency maintain the pool–scar–mound complex; and (3) large, debris‐rich events with a decadal to centennial frequency add material to the debris spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号