首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A sequence of shallow reef cores from Heron Reef, Great Barrier Reef, provides new insights into Holocene reef growth models. Isochron analysis of a leeward core transect suggests that the north‐western end of Heron Reef reached current sea‐level by ca 6·5 kyr bp and then prograded leeward at a rate of ca 19·6 m/kyr between 5·1 kyr and 4·1 kyr bp (pre‐1950) to the present reef margin. A single short core on the opposing margin of the reef is consistent with greater and more recent progradation there. Further to the east, one windward core reached modern sea‐level by ca 6·3 kyr bp , suggesting near ‘keep‐up’ behaviour at that location, but the opposing leeward margin behind the lagoon reached sea‐level much more recently. Hence, Heron Reef exhibited significantly different reef growth behaviour on different parts of the same margin. Mean reef accretion rates calculated from within 20 m of one another in the leeward core transect varied between ca 2·9 m and 4·7 m/kyr depending on relative position in the prograding wedge. These cores serve as a warning regarding the use of isolated cores to inform reef growth rates because apparent aggradation at any given location on a reef varies depending on its location relative to a prograding margin. Only transects of closely spaced cores can document reef behaviour adequately so as to inform reef growth models and sea‐level curves. The cores also emphasize potential problems in U‐series dates for corals within a shallow (ca 1·5 m) zone beneath the reef flat. Apparent age inversions restricted to that active diagenetic zone may reflect remobilization and concentration of Th in irregularly distributed microbialites or biofilms that were missed during sample vetting. Importantly, the Th‐containing contaminant causes ages to appear too old, rather than too young, as would be expected from younger cement.  相似文献   

2.
Falling‐stage deltas are predicted by sequence stratigraphic models, yet few reliable criteria are available to diagnose falling‐stage deltaic systems in surface exposures. Recent work on the Upper Cretaceous (Turonian) Ferron Sandstone in the western Henry Mountains Syncline of south‐central Utah has established its environment of deposition as a series of modest‐sized (5 to 20 km wide), probably asymmetrical, mixed‐influence deltas (‘Ferron Notom Delta’) that dispersed sediment eastwards from the rising Sevier orogenic hinterland into the Western Cordilleran Foreland Basin. Analysis of sandstone body stacking patterns in a 67 km long, depositional strike‐parallel (north–south) transect indicates that the growth of successive deltas was strongly forced by synsedimentary growth of a long wavelength (ca 100 km), 50 m amplitude fold structure. Herein, two discrete areas within this transect, superbly exposed in three dimensions, are documented in order to determine the details of stratal stacking patterns in the depositional dip direction, and thereby to assess the stratigraphic context of the Ferron Notom Delta. In the two study areas, dip transects expose facies representing river mouth bar to distal delta front environments over distances of 2 to 4 km. Key stratal packages are clinothems that offlap, downlap, and describe descending regressive trajectories with respective to basal and top datums; they are interpreted as the product of relative sea‐level fall. The vertical extent of clinoforms suggests that deltas prograded into <30 m of water. Furthermore, these deltaic successions preserve abundant evidence of delta front slope failure, growth faulting, and incision and filling of deep (<15 m) slope gullies. Gully fills are composed of chaotic intraformational breccia and/or massive sandstone, and constitute linear, ‘shoestring’ sandbodies in the distal portions of individual palaeodelta systems. They are interpreted to have been cut and filled during the late falling‐stage and lowstand of relative sea‐level cycles. The north–south distribution of the stratal style described above seems to be focused on the flanks of the growth anticline, and so the numerous falling‐stage systems tracts preserved within the Ferron Notom Delta probably owe their origin to synsedimentary structural growth, and the unstable fluid pressure regime that this growth imposed on the sea floor and shallow subsurface.  相似文献   

3.
An early Paleozoic inter‐platform, platform, slope and shelf succession comprised of five Cambrian to mid‐Ordovician seismic sequences, has been identified in the southwestern part of the Tarim Basin. A previously unknown, elongate shelf succession that extends from east to west transects the Taxinan area of the southwestern Tarim Basin. It was flanked by carbonate platforms and platform margins, and by peri‐platform margin slopes on its north and south sides. The Markit platform margin and slope, located along the northern side of the shelf, extended nearly linearly west to east with some headlands and embayments towards the east. The Tangnan platform margin and slope, located along the southern side of the shelf, extended southwest to northeast and was more sinuous with pronounced northwest‐directed headlands flanked by embayments. Differentiation of these settings began in earliest Cambrian time during continental breakup. Initially, broad gentle slopes flanked an open shelf seaway in Cambrian time. In Early Ordovician time, the Markit and Tangnan platform margins became more distinct and rimmed, and were flanked by slightly steeper, but still very gentle slopes. During their deposition, these platform margins and their adjoining slopes exhibited some lateral migration, with a slight overall widening of the open shelf seaway between them from Cambrian to Ordovician time. The presence of these platform margin and slope successions in the southwestern area of the Tarim basin provides another focus for petroleum exploration and discovery of additional carbonate reef‐shoal reservoirs in the Markit and Tangnan areas. The adjoining deep‐water shelf shale and mudstone shelf succession itself is an additional prospective petroleum source rock in close proximity to these potential reef‐shoal reservoirs.  相似文献   

4.
Foraminifera can be used to determine the source(s) of carbonate sediment and the directions of sediment transport in shallow, coastal lagoons such as Frank Sound on the south-central coast of Grand Cayman. These determinations, based on the distribution of foraminiferal assemblages and ‘tracer species’ (numerically abundant species that live in known physiographic units and/or ecological conditions), show that the lagoonal sediments are a mixture of grains that originated in the lagoon and forereef. The variable proportions of these foraminifera throughout the lagoon reflects the dynamic processes that control lagoonal sedimentation. Amphistegina gibbosa, Discorbis rosea, and Asterigerina carinata lived in the forereef environment. The fact that these ‘tracer species’ are found throughout Frank Sound and in the beach sands, shows that they were transported across the reef crest and the lagoon. Abrasion-resistant Archaias angulatus, a‘tracer species’ indicative of a lagoonal setting, forms up to 50% of foraminiferal assemblages found in the lagoonal sediments. Preferential winnowing of small tests from these populations indicates sorting under high energy conditions. The vertical distribution of the forereef and lagoonal foraminifera in the sediment blanket that covers the floor of Frank Sound indicates that these processes are temporally persistent. Transportation of forereef foraminifera into and around the lagoon and sorting of the lagoonal foraminifera cannot take place under ‘normal’ conditions when the tranquil lagoon is characterized by weak currents. Storms and/or hurricanes, however, generate short-lived high-energy events that can move and sort the sediment and foraminifera. At the height of a storm, water and sediment are moved over the reef and then piled and held onshore by the onshore winds and the constant flow of water over the reef and across the lagoon. These currents can mix some of the lagoonal and forereef sediments. As a storm wanes, however, the ‘piled water’ flows offshore via strong rip currents that pass into the ocean through the channels which transect the reef. These currents winnow and/or strip sediment from the lagoon and may transport lagoonal sediments into the forereef area. As a result, residual lagoonal sediment is commonly characterized by larger and abrasion-resistant foraminifera.  相似文献   

5.
Bulk magnetic susceptibility measurements on sedimentological samples from all geological periods have been used widely in the last two decades for correlations and as a proxy for sea‐level variations. This paper explores the link between magnetic susceptibility, depositional setting and environmental parameters. These environmental parameters include distal–proximal transects, microfacies successions and fourth‐order trends on different carbonate platform types (platform, ramp, carbonate mound or atoll) during different Devonian stages (Eifelian, Givetian and Frasnian). Average magnetic susceptibility values over a distal–proximal‐trending facies succession vary markedly with depositional setting. On carbonate platforms, average magnetic susceptibility generally increases towards the top of shallowing‐upward sequences. On a distal–proximal transect, average magnetic susceptibility is intermediate for the deepest facies, decreases for the reef belts and increases to a maximum in the back‐reef zone. In ramps and atolls, magnetic susceptibility trends clearly differ; average magnetic susceptibility generally decreases towards the top of shallowing‐upward sequences and is highest in the deepest facies. The strong relationship between magnetic susceptibility, facies and sequences implies a strong environmental influence. However, the different responses in the different platform types suggest that sea‐level changes leading to variation in detrital input is not the only parameter controlling average magnetic susceptibility values. Other primary or secondary processes also probably influenced magnetic mineral distribution. Primary processes such as carbonate production and water agitation during deposition are probably key factors. When carbonate production is high, the proportion of magnetic minerals is diluted and the magnetic susceptibility signal decreases. High water agitation during deposition will also selectively remove magnetic minerals and will lead to low average magnetic susceptibility values. These parameters explain the lowest values observed on the reef platform, inner ramp and atoll crown, which are all in areas characterized by higher carbonate production and greater water agitation during deposition. The lowest values observed in the lagoon inside the atoll crown can be related to detrital isolation by the atoll crown. However, other parameters such as biogenic magnetite production or diagenesis can also influence the magnetic signal. Diagenesis can change magnetism by creating or destroying magnetic minerals. However, the influence of diagenesis probably is linked strongly to the primary facies (permeability, amount of clay or organic matter) and probably enhanced the primary signal. The complexity of the signal gives rise to correlation problems between different depositional settings. Thus, while magnetic susceptibility has the potential to be an important correlation tool, the results of this investigation indicate that it cannot be used without consideration of sedimentary processes and depositional environments and without strong biostratigraphical control.  相似文献   

6.
Oceanic islands – such as the Azores in the mid‐North Atlantic – are periodically exposed to large storms that often remobilize and transport marine sediments along coastlines, and into deeper environments. Such disruptive events create deposits – denominated tempestites – whose characteristics reflect the highly dynamic environment in which they were formed. Tempestites from oceanic islands, however, are seldom described in the literature and little is known about storm‐related sediment dynamics affecting oceanic island shelves. Therefore, the geological record of tempestite deposits at oceanic islands can provide invaluable information on the processes of sediment remobilization, transport and deposition taking place on insular shelves during and after major storms. In Santa Maria Island (Azores), a sequence of Neogene tempestite deposits was incorporated in the island edifice by the ongoing volcanic activity (thus preserved) and later exposed through uplift and erosion. Because it was overlain by a contemporary coastal lava delta, the water depth at the time of deposition could be inferred, constituting an excellent case‐study to gain insight on the still enigmatic processes of insular shelf deposition. Sedimentological, palaeontological, petrographic and palaeo‐water depth information allowed the reconstruction of the depositional environment of these sediments. The sequence typifies the characteristics of a tempestite (or successive tempestites) formed at ca 50 m depth, in a steep, energetic open insular shelf, and with evidence for massive sediment remobilization from the nearshore to the middle or outer shelf. The authors claim that cross‐shelf transport induced by storm events is the main process of sediment deposition acting on steep and narrow shelves subjected to high‐energetic environments, such as the insular shelves of open‐sea volcanic islands.  相似文献   

7.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   

8.
A common assumption in the geological analysis of modern reefs is that coral community zonation seen on the surface should also be found in cores from the reef interior. Such assumptions not only underestimate the impact of tropical storms on reef facies development, but have been difficult to test because of restrictions imposed by narrow‐diameter cores and poor recovery. That assumption is tested here using large‐diameter cores recovered from a range of common zones across three Campeche Bank reefs. It is found that cores from the reef‐front, crest, flat and rubble‐cay zones are similar in texture and coral composition, making it impossible to recognize coral assemblages that reflect the surface zonation. Taphonomic signatures imparted by variations in encrustation, bioerosion and cementation, however, produce distinct facies and delineate a clear depth zonation. Cores from the reef‐front zone (2–10 m depth) are characterized by sections of Acropora palmata cobble gravel interspersed with sections of in‐place (but truncated) A. palmata stumps. Upper surfaces of truncated colonies are intensely bioeroded by traces of Entobia isp. and Gastrochaenolites isp. and encrusted by mm‐thick crustose corallines before colony regeneration and, therefore, indicate punctuated growth resulting from a hurricane‐induced cycle of destruction and regeneration. Cores from the reef crest/flat (0–2 m depth) are also characterized by sections of hurricane‐derived A. palmata cobble‐gravels as well as in‐place A. palmata colonies. In contrast to the reef front, however, these cobble gravels are encrusted by cm‐thick crusts of intergrown coralline algae, low‐relief Homotrema and vermetids, bored by traces of Entobia isp. and Trypanites isp. and coated by a dense, peloidal, micrite cement. Cores from the inter‐ to supratidal rubble‐cay zone (+0–5 m) are only composed of A. palmata cobble gravels and, although clasts show evidence of subtidal encrustation and bioerosion, these always represent processes that occurred before deposition on the cay. Instead, these gravels are distinguished on the basis of their limited bioerosion and marine cements, which exhibit fabrics formed in the intertidal zone. These results confirm that hurricanes have a major influence on facies development in Campeche Bank reefs. Instead of reflecting the surface coral zonation, each facies records a distinctive, depth‐related set of taphonomic processes, which reflect colonization, alteration and stabilization following the production of new substrates by hurricanes.  相似文献   

9.
针对山区和丘陵等复杂地形下浅埋锚板抗拔承载力计算问题,基于极限分析上限定理、非线性Mohr-Coulomb强度准则及其关联流动法则,构造了斜坡浅埋水平条形锚板的曲线型破裂机制和机动许可速度场,采用变分极值原理获得了其上方土体破裂面方程和抗拔承载力的上限解,分析了斜坡倾角和锚板埋深对锚板抗拔承载力的影响。结果表明:随着斜坡倾角的增大,锚板抗拔承载力逐渐减小,此时其上方两侧土体破裂面不再对称且整体向下坡侧偏移;锚板抗拔承载力及其上方两侧土体破裂面宽度均随着埋深增大而增加;锚板埋深越小,斜坡倾角对其抗拔承载力的影响越大,应在计算中予以考虑,以更合理地反映斜坡浅埋水平条形锚板的抗拔承载特性。  相似文献   

10.
Two thousand and twenty well-characterized coral specimens from 17 localities have been analyzed for Sr. Seventy-three genera and subgenera, mostly hermatypic scleractinians, are represented. For some genera, specimens living in surface reef environments are compared with those from 18.3 m depths on the same reefs. Growth rates for some species have also been measured at these depths at one of the sampling sites. Skeletal strontium for a given genus decreases with increasing water temperature, a relationship which previously eluded detection. Aragonite deposited by corals living on the reef at a depth of 18.3 m contains more strontium than the skeletal aragonite of the same coral genera from shallow-water, surface environments. Quantitative treatment of the data for Acropora, one of the most abundant and widely distributed of the reef-building corals, suggests that the observed strontium variations may reflect variations in the rate of skeletal calcification, rather than direct dependence upon temperature or water depth. There is evidence for ‘species effects’, apparently unrelated to growth rate differences, in that certain coral genera are consistently enriched or depleted in skeletal strontium content relative to other genera living in the same reef environments under identical ambient conditions. Temperature, salinity, water depth, seawater composition, and/or other such parameters may in part determine the levels of trace element concentration in carbonates deposited by corals and other marine invertebrates, but it would appear that these variables more directly affect physiological processes which in turn control skeletal chemistry.  相似文献   

11.
The nature of flow, sediment transport and bed texture and topography was studied in a laboratory flume using a mixed size-density sediment under equilibrium and non-equilibrium (aggradational, degradational) conditions and compared with theoretical models. During each experiment, water depth, bed and water surface elevation, flow velocity, bed shear stress, bedload transport and bed state were continuously monitored. Equilibrium, uniform flow was established with a discharge of about 0.05 m3 s?1, a flow depth of about 0.01 m, a flow velocity of about 0.81–0.88 m s?1, a spatially averaged bed shear stress of about 1.7–2.2 Pa and a sediment transport rate of about 0.005–0.013 kg m?1 s?1 (i.e. close to the threshold of sediment transport). Such equilibrium flow conditions were established prior to and at the end of each aggradation or degradation experiment. Pebble clusters, bedload sheets and low-lying bars were ubiquitous in the experiments. Heavy minerals were relatively immobile and occurred locally in high concentrations on the bed surface as lag deposits. Aggradation was induced by (1) increasing the downstream flow depth (flume tilting) and (2) sediment overloading. Tilt-induced aggradation resulted in rapid deposition in the downstream half of the flume of a cross-stratified deposit with downstream dipping pebbles (pseudo-imbricated). and caused a slight decrease in the equilibrium mean water surface slope and total bedload transport rate. These differences between pre- and post-aggradation equilibrium flow conditions are due to a decrease in the local grain roughness of the bed. Sediment overloading produced a downstream fining and thinning wedge of sediment with upstream dipping pebbles (imbricated), whereas the equilibrium flow and sediment transport conditions remained relatively unchanged. Degradation was induced by (1) decreasing the downstream flow depth (flume tilting) and (2) cutting off the sediment feed. Tilt-induced degradation produced rapid downstream erosion and upstream deposition due to flow convergence with little change to the equilibrium flow and sediment transport conditions. The cessation of sediment feed produced degradation and armour development, a reduction in the mean water surface slope and flow velocity, an increase in flow depth, and an exponential decrease in bedload transport rate as erosion proceeded. A bedload transport model predicted total and fractional transport rates extremely well when the coarse-grained (or bedform trough) areas of the bed are used to define the sediment available to be transported. A sediment routing model, MIDAS, also reproduced the equilibrium and non-equilibrium flow conditions, total and fractional bedload transport rates and changes in bed topography and texture very well.  相似文献   

12.
为研究强降雨条件下地表径流和裂隙水流的拖曳力作用对斜坡稳定性的影响,建立斜坡地表径流和地下水渗流耦合分析模型。采用Navier-Stokes方程描述地表径流和裂隙水流,Brinkman-extended Darcy方程描述土体和岩石中的渗流,并根据不同介质交界面处流速相等及剪应力连续的边界条件,推求各介质中的流速分布。应用Newton内摩擦定律求得水流对斜坡产生的拖曳力,进而将拖曳力嵌入刚体极限平衡理论对斜坡稳定性进行分析。典型斜坡实例计算结果表明,当未考虑拖曳力效应时,斜坡的安全系数为1.164,考虑水流对斜坡土体产生拖曳力效应时,斜坡的安全系数为1.089,斜坡安全系数降低了6.44%。这表明拖曳力作用对斜坡的稳定性存在不利影响,斜坡土体在近乎临界稳定状态下拖曳力将对斜坡失稳起到决定性作用。最后分别讨论了考虑拖曳力和不考虑拖曳力情况下斜坡的安全系数与径流水深、斜坡倾角、土层厚度之间的关系。分析表明,在其他条件相似的条件下,斜坡越陡,斜坡土体的安全系数下降越明显;斜坡安全系数随着斜坡倾角增加而不断降低,随着土层厚度的增加而不断降低。  相似文献   

13.
In the Himalayan orogen, Greater Himalayan (GH) rocks were buried to mid‐ to lower‐crustal levels and are now exposed across the strike of the orogen. Within the eastern Himalaya, in the Kingdom of Bhutan, the GH is divided into structurally lower (lower‐GH) and upper (upper‐GH) levels by the Kakhtang thrust (KT). Pressure–temperature estimates from lower‐ and upper‐GH rocks collected on two transects across the KT yield similar P–T–structural distance trends across each transect. In the eastern transect, temperatures are similar (from 730 to 650 °C) over a structural thickness of ~11 km, but peak pressures decrease from ~10 to 6 kbar with increasing structural level. In comparison, peak temperatures in the central Bhutan transect are similar (from 730 to 600 °C), but pressures decrease from 10 to 6.5 kbar with increasing structural level over a structural thickness of ~6 km. The structurally highest sample reveals slightly higher pressures of 8.0 kbar in comparison to pressures of ~6.5 kbar for samples collected from within the KT zone, ~4 km below. Within each transect, there are increases in pressure ± temperature within the overall upright P–T gradient that may demarcate intra‐GH shear zone(s). These P–T results combined with evidence that the timing of initial melt crystallization becomes older with increasing structural level suggest that the intra‐GH shear zones emplaced deeper GH rocks via progressive ductile underplating. These shear zones, including the KT, likely aided in the initial emplacement and construction of the GH as a composite tectonic unit during the Late Oligocene to Early Miocene, from c. 27 to 16 Ma.  相似文献   

14.
Heterozoan temperate‐water carbonates mixed with varying amounts of terrigenous grains and muddy matrix (Azagador limestone) accumulated on and at the toe of an inherited escarpment during the late Tortonian–early Messinian (late Miocene) at the western margin of the Almería–Níjar Basin in south‐east Spain. The escarpment was the eastern end of an uplifting antiform created by compressive folding of Triassic rocks of the Betic basement. Channelized coralline‐algal/bryozoan rudstone to coarse‐grained packstone, together with matrix‐supported conglomerate, are the dominant lithofacies in the higher outcrops, comprising the deposits on the slope. These sediments mainly fill small canyon‐shaped, half‐graben depressions formed by normal faults active before, during and after carbonate sedimentation. Roughly bedded and roughly laminated coralline‐algal/bryozoan rudstone to coarse‐grained packstone are the main lithofacies forming an apron of four small (kilometre‐scale) lobes at the toe of the south‐eastern side of the escarpment (Almería area). Channelized and roughly bedded coralline‐algal/bryozoan rudstone to coarse‐grained packstone, conglomerates, packstone and sandy silt accumulated in a small channel‐lobe system at the toe of the north‐eastern side of the escarpment (Las Balsas area). Carbonate particles and terrigenous grains were sourced from shallow‐water settings and displaced downslope by sediment density flows that preferentially followed the canyon‐shaped depressions. Roughly laminated rudstone to packstone formed by grain flows on the initially very steep slope, whereas the rest of the carbonate lithofacies were deposited by high‐density turbidite currents. The steep escarpment and related break‐in‐slope at the toe favoured hydraulic jumps and the subsequent deposition of coarse‐grained, low‐transport efficiency skeletal‐dominated sediment in the apron lobes. Accelerated uplift of the basement caused a relative sea‐level fall resulting in the formation of outer‐ramp carbonates on the apron lobes, which were in turn overlain by lower Messinian coral reefs. The Almería example is the first known ‘base of slope’ apron within temperate‐water carbonate systems.  相似文献   

15.
ODP Leg 182 drilled two north‐south transects in the western Great Australian Bight close to longitude 128°E. These transects penetrated a remarkably thick section of uppermost Pliocene and Pleistocene carbonate sediments, which are separated from Miocene sections by a major hiatus. In the eastern transect, at sites 1129, 1131 and 1127, the Brunhes‐Matuyama boundary (onset of C1n) was found at 343 m, between 280 and 300 m, and at 343 m below the sea floor, respectively. In the western transect, at sites 1132 and 1130, it was found between 170 and 181 m, and at 200 m, respectively. Within the Brunhes chron, inclination and intensity fluctuations and correlations between susceptibility and standard δ18O records were used to give age‐depth relations. These age relations from the palaeomagnetics are broadly consistent with the biostratigraphy and the δ18O results from Leg 182, but do not provide an entirely independent dataset. Rock magnetism stratigraphy at site 1131 revealed the principal bryozoan buildup to be at the time of the last glacial lowstand, as suggested by previous workers. At all sites the sedimentation rate increases from the basal unconformity up into the thick Upper Pleistocene section. In the western transect there appears to be a partial record of most of the Late Pliocene and Early Pleistocene chron boundaries (C1r1n to C2An3n) in a condensed section, but in the eastern transect only the Jaramillo (C1r1n) is observed.  相似文献   

16.
In this paper, an analytical expression is derived for the factor of safety of the rock slope incorporating most of the practically occurring destabilizing forces as well as the external stabilizing force through an anchoring system. The slope stability is analyzed as a two-dimensional problem, considering a slice of unit thickness through the slope and assuming negligible resistance to sliding at the lateral boundaries of the sliding block. A detailed parametric study is presented to investigate the effect of surcharge on the stability of the rock slope for practical ranges of governing parameters such as inclination of the slope face, inclination of the failure plane, depth of tension crack, depth of water in tension crack, shear strength parameters of the material at the failure plane, unit weight of rock, stabilizing force and its inclination, and seismic load. For the range of parameters considered in the present study, it is found that the factor of safety of the rock slope decreases with increase in surcharge; the rate of decrease being relatively higher for lower values of surcharge. It is also observed that for a specific surcharge, the factor of safety depends significantly on all other parameters, except for unit weight of rock and higher values of inclination of stabilizing force to the normal at the failure plane. For any combination of these variables, the surcharge plays a vital role in the stability. A perfectly stable slope at relatively low surcharge can become unsafe with the increase in surcharge. The deterioration in the stability can be quite rapid, depending on the combination of the factors under consideration. The analysis and the general expression proposed herein can be used to carry out a quantitative assessment of the stability of the rock slopes.  相似文献   

17.
The distribution of ice‐rafted detritus (IRD) is studied in three cores from the western Svalbard slope (1130–1880 m water depth, 76–78°N) covering the period 74–0 ka. The aim was to provide new insight into the dynamics of the Svalbard–Barents Sea Ice Sheet during Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice‐sheet interactions with changes in ocean circulation and climate on orbital and millennial (Dansgaard–Oeschger events of stadial–interstadial) time scales. The results show that concentration, flux, composition and grain‐size of IRD vary with climate and ocean temperature on both orbital and millennial time scales. The IRD consists mainly of fragments of siltstones and mono‐crystalline transparent quartz (referred to as ‘quartz’). IRD dominated by siltstones has a local Svalbard–Barents Sea source, while IRD dominated by quartz is from distant sources. Local siltstone‐rich IRD predominates in warmer climatic phases (interstadials), while the proportion of allochthonous quartz‐rich IRD increases in cold phases (glacials and stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently increased and the warmer ocean surface caused faster melting. During the glacial maxima (MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice‐sheets must have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse‐grained IRD. These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat of the Svalbard–Barents Sea Ice Sheet in phase with millennial‐scale climate oscillations.  相似文献   

18.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   

20.
The fringing reef at Pointe-au-Sable (Mauritius, Indian Ocean) was used to examine the effects of Holocene sea-level rise on coral growth. This reef is about 1000 m wide and comprises a forereef slope (30 m maximum depth), a narrow reef crest and a very shallow backreef (1·5 m maximum depth). Four major coral communities were recognized, which developed within relatively narrow depth ranges: a Pachyseris/Oulophyllia community (deeper than 20 m), an Acropora‘tabulate’Faviid community (20–6 m); a robust branching Acropora community (less than 6 m) and a Pavona community (less than 10m). Three high-recovery cores show the Holocene reef sequence is a maximum of 19·3 m thick and comprises four coral biofacies which are similar to counterparts identified in modern communities: robust branching, tabular-branching, robust branching-domal and foliaceous coral facies. A minimum sea-level curve for the past 7500 years was constructed. Using distribution patterns of coral biofacies and radiocarbon dates from corals, reconstruction of reef growth history indicates that both offshore and onshore reef zones were developing coevally, aggrading at rates of 4·3 mm year?1 from 6900 years B.P. The reef caught up with sea-level only after sea-level stabilized. Changes in coral community and reef growth rates were driven principally by increasing water agitation due to the decrease in accommodation space. Based on the composition of the successive coral assemblages, the reef appears to have grown through successive equilibrium stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号