首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

2.
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10–20\(^\circ \) of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of \(-z_i/L\) between zero (neutral) and 1041 (highly convective), where \(z_i\) is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the “roll factor,” which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of \(-z_i/L\); however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about \(-z_i/L \approx \) 15–20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing \(-z_i/L\). It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as \(-z_i/L\) increases.  相似文献   

3.
Turbulent fluxes of sensible and latent heat were measured with the helicopter-borne turbulence probe Helipod over a heterogeneous landscape around the Meteorological Observatory Lindenberg during the STINHO-2 and LITFASS-2003 field experiments. Besides the determination of area-averaged heat fluxes, the analysis focused on different aspects of the response of the turbulent structure of the convective boundary layer (CBL) on the surface heterogeneity. A special flight pattern was designed to study flux profiles both over quasi-homogeneous sub-areas of the study region (representing the major land use types—forest, farmland, water) and over a typical mixture of the different surfaces. Significant differences were found between the heat fluxes over the individual surfaces along flight legs at about 80 m above ground level, in agreement with large-aperture scintillometer measurements. This flux separation was still present during some flights at levels near the middle of the CBL. Different scales for the blending height and horizontal heterogeneity were calculated, but none of them could be identified as a reliable indicator of the mixing state of the lower CBL. With the exception of the flights over water, the latent heat flux measurements generally showed a larger statistical error when compared with the sensible heat flux. Correlation coefficients a nd integral length scales were used to characterise the interplay between the vertical transport of sensible and latent heat, which was found to vary between ‘fairly correlated’ and ‘decoupled’, also depending on the soil moisture conditions.  相似文献   

4.
Large-eddy simulations (LESs) are employed to investigate the turbulence characteristics in the shear-free convective boundary layer (CBL) driven by heterogeneous surface heating. The patterns of surface heating are arranged as a chessboard with two different surface heat fluxes in the neighbouring patches, and the heterogeneity scale Λ in four different cases is taken as 1.2, 2.5, 5.0 and 10.0 km, respectively. The results are compared with those for the homogeneous case. The impact of the heterogeneity scale on the domain-averaged CBL characteristics, such as the profiles of the potential temperature and the heat flux, is not significant. However, different turbulence characteristics are induced by different heterogeneous surface heating. The greatest turbulent kinetic energy (TKE) is produced in the case with the largest heterogeneity scale, whilst the TKE in the other heterogeneous cases is close to that for the homogeneous case. This result indicates that the TKE is not enhanced unless the scale of the heterogeneous surface heating is large enough. The potential temperature variance is enhanced more significantly by a larger surface heterogeneity scale. But this effect diminishes with increasing CBL height, which implies that the turbulent eddy structures are changed during the CBL development. Analyses show that there are two types of organized turbulent eddies: one relates to the thermal circulations induced by the heterogeneous surface heating, whilst the other identifies with the inherent turbulent eddies (large eddies) induced by the free convection. At the early stage of the CBL development, the dominant scale of the organized turbulent eddies is controlled by the scale of the surface heterogeneity. With time increasing, the original pattern breaks up, and the vertical velocity eventually displays horizontal structures similar to those for the homogeneous heating case. It is found that after this transition, the values of λ/z i (λ is the dominant horizontal scale of the turbulent eddies, z i is the boundary-layer height) ≈1.6, which is just the aspect ratio of large eddies in the CBL.  相似文献   

5.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

6.
The maximum height of the convective boundary layer (CBL) over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather. We combined the Weather Research and Forecasting Large Eddy Simulation (WRF-LES) with data from Global Positioning System (GPS) radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert. The model reproduced the evolution of the CBL processes reasonably well, but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection. Further simulations were performed with multiple configurations and sensitivity tests. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile. However, increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude (< 3 km) in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

7.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

8.
We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depth-equilibrium for different vertical profiles of aerosol heating rates. Our results indicated that aerosol heat absorption decreased the depth of the CBL due to a combination of factors: (i) surface shadowing, reducing the sensible heat flux at the surface and, (ii) the development of a deeper inversion layer, stabilizing the upper CBL depending on the vertical aerosol distribution. Steady-state analytical solutions for CBL depth and potential temperature jump, derived using zero-order mixed-layer theory, agreed well with the large-eddy simulations. An analysis of the entrainment zone heat budget showed that, although the entrainment flux was controlled by the reduction in surface flux, the entrainment zone became deeper and less stably stratified. Therefore, the vertical profile of the aerosol heating rate promoted changes in both the structure and evolution of the CBL. More specifically, when absorbing aerosols were present only at the top of the CBL, we found that stratification at lower levels was the mechanism responsible for a reduction in the vertical velocity and a steeper decay of the turbulent kinetic energy throughout the CBL. The increase in the depth of the inversion layer also modified the potential temperature variance. When aerosols were present we observed that the potential temperature variance became significant already around $0.7z_i$ (where $z_i$ is the CBL height) but less intense at the entrainment zone due to the smoother potential temperature vertical gradient.  相似文献   

9.
The maximum height of the convective boundary layer(CBL)over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather.We combined the Weather Research and Forecasting Large Eddy Simulation(WRF-LES)with data from Global Positioning System(GPS)radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert.The model reproduced the evolution of the CBL processes reasonably well,but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection.Further simulations were performed with multiple configurations and sensitivity tests.The sensitivity tests for the lateral boundary conditions(LBCs)showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs.A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs.Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer.A reduction in the sensible heat flux can correct overestimates of the potential temperature profile.However,increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude(3 km)in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

10.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

11.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

12.
Turbulence measurements in the lower half of the convective boundary layer (CBL), which includes both mixed layer and surface layer, were carried out with five sonic anemometers mounted on a 213-m tower over a complex flat suburban area with patches of forest, agricultural land, houses and buildings. Also made were radiosoundings of temperature, humidity and wind speed, to determine the CBL height. The sonic anemometer data of wind speed and temperature were processed to derive the second-moment turbulent statistics and were analyzed to investigate the applicability of variance methods to estimate regional surface fluxes of sensible heat. It was found that the temperature variances in the lower mixed layer, coupled with universal functions, produced sensible heat fluxes H over the area with an rms error of the order of 40 Wm-2 when compared with H values derived from the eddy correlation method. The variance of the vertical wind speed did not produce as good a result. In contrast, the surface-layer temperature variances yielded H values with rms error of the order of 20 Wm-2, even though the underlying surface was non-uniform and highly non-isothermal, above which enhanced temperature variances could be suspected.  相似文献   

13.
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average $-63\,\%$ ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.  相似文献   

14.
Mean Profiles of Moisture Fluxes in Snow-Filled Boundary Layers   总被引:1,自引:0,他引:1  
Profiles of moisture fluxes have been examined for convective boundary layers containing clouds and snow, using data derived from aircraft measurements taken on four dates during the 1983/1984 University of Chicago lake-effect snow project. Flux profiles were derived from vertical stacks of aircraft cross-wind flight legs taken at various heights over Lake Michigan near the downwind shore. It was found that, if ice processes are taken into account, profiles of potential temperature and water content were very similar to those presented in past studies of convective boundary layers strongly heated from below. Profiles of total water content and equivalent potential temperature adjusted for ice were nearly invariant with height, except very near the top of the boundary layer, suggesting that internal boundary-layer mixing processes were rapid relative to the rates at which heat and vapour were transported into the boundary layer through entrainment and surface fluxes. Ice was found to play a significant, measurable role in boundary-layer moisture fluxes. It was estimated that 40 to 57% of the upward vapour flux was returned to the surface in the form of snow, converting about 45 to 64% of the surface latent heat flux into sensible heat in the snow-producing process. Assuming advective fluxes are relatively small (thought to be appropriate after the first few tens of km over the lake as suggested by past studies), the boundary layer was found to warm at a rate faster than could be explained by surface heat fluxes and latent heat releases alone, the remainder of the heating presumably coming from radiational processes and entrainment. Discussions of moisture phase change processes throughout the boundary layer and estimates of errors of these flux measurements are presented.  相似文献   

15.
A land-surface model (LSM) is coupled with a large-eddy simulation (LES) model to investigate the vegetation-atmosphere exchange of heat, water vapour, and carbon dioxide (CO2) in heterogeneous landscapes. The dissimilarity of scalar transport in the lower convective boundary layer is quantified in several ways: eddy diffusivity, spatial structure of the scalar fields, and spatial and temporal variations in the surface fluxes of these scalars. The results show that eddy diffusivities differ among the three scalars, by up to 10–12%, in the surface layer; the difference is partly attributed to the influence of top-down diffusion. The turbulence-organized structures of CO2 bear more resemblance to those of water vapour than those of the potential temperature. The surface fluxes when coupled with the flow aloft show large spatial variations even with perfectly homogeneous surface conditions and constant solar radiation forcing across the horizontal simulation domain. In general, the surface sensible heat flux shows the greatest spatial and temporal variations, and the CO2 flux the least. Furthermore, our results show that the one-dimensional land-surface model scheme underestimates the surface heat flux by 3–8% and overestimates the water vapour and CO2 fluxes by 2–8% and 1–9%, respectively, as compared to the flux simulated with the coupled LES-LSM.  相似文献   

16.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

17.
A nocturnal gravity wave was detected over a south-western Amazon forest during the Large-Scale Biosphere–Atmosphere experiment in Amazonia (LBA) in the course of the dry-to-wet season campaign on October 2002. The atmospheric surface layer was stably stratified and had low turbulence activity, based on friction velocity values. However, the passage of the wave, an event with a period of about 180–300 s, caused negative turbulent fluxes of carbon dioxide (CO2) and positive sensible heat fluxes, as measured by the eddy-covariance system at 60 m (≈30 m above the tree tops). The evolution of vertical profiles of air temperature, specific humidity and wind speed during the wave movement revealed that cold and drier air occupied the sub-canopy space while high wind speeds were measured above the vegetation. The analysis of wind speed and scalars high frequency data was performed using the wavelet technique, which enables the decomposition of signals in several frequencies allowed by the data sampling conditions. The results showed that the time series of vertical velocity and air temperature were −90° out of phase during the passage of the wave, implying no direct vertical transport of heat. Similarly, the time series of vertical velocity and CO2 concentration were 90° out of phase. The wave was not directly associated with vertical fluxes of this variable but the mixing induced by its passage resulted in significant exchanges in smaller scales as measured by the eddy-covariance system. The phase differences between horizontal velocity and both air temperature and CO2 concentration were, respectively, zero and 180°, implying phase and anti-phase relationships. As a result, the wave contributed to positive horizontal fluxes of heat and negative horizontal fluxes of carbon dioxide. Such results have to be considered in nocturnal boundary-layer surface-atmosphere exchange schemes for modelling purposes.  相似文献   

18.
We describe a wavelet-based technique to determine the spectral turbulentcontribution to the vertical flux of sensible heat in a position-wavelength representation. This technique combines awavelet transform (Morlet wavelet) with conditional sampling. We apply this methodto aircraft datacollected during a sea-breeze circulation (BEMA97 experiment) with heterogeneousturbulence conditions horizontally and vertically as well. The turbulent fluxes are analysed with the conditional wavelet techniqueas a function of the wavelength and the horizontal distance.The turbulent processes within the thermal internal boundary layer associatedwith the sea breeze are clearly identified. The results exhibit the wavelength bands through which the upward flux (originating fromthe surface) and the downward flux (originating from the top of theboundary layer) are important.  相似文献   

19.
Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.  相似文献   

20.
Summary A diagnostic model for complete heat budgets in the free atmosphere is presented and is applied to the African-Atlantic sector between 35°S–30°N for May 1979. The model is based on the conservation equations for latent and sensible heat. These are evaluated in a form integrated over 24 hours in time and over atmospheric boxes of 2.5°×2.5° in horizontal and 100 hPa in vertical direction. Grid-scale input data are the 3D-ECMWF-diagnoses of the FGGE period plus parameterized fields of surface rain, evaporation and sensible Heat flux. This leads to an overspecification of latent and sensible heat budgets for any atmospheric column between surface and top of the atmosphere and thus yields an objective column imbalance. In order to separate the vertical subscale fluxes of rain, moisture and heat in the free atmosphere the model uses a closure assumption for the coupling between moisture and sensible heat flux as well as one for the vertical imbalance profiles; it is demonstrated that the budgets are not too sensitive with respect to these parameterizations.Results are presented in terms of vertical profiles of the subscale vertical fluxes of rain, moisture and heat. These are interpeted as measures of convective activity, with particular emphasis on the ITCZ. May 1979 averages as well as results for a respresentative single day are discussed. The imbalance (=the error) can be sufficiently well separated from the signal. It is shown that the low-level mass flux divergence does not coincide with the position of the ITCZ while the maximum of the subscale fluxes does coincide. Over the continent, it is not the horizontal mass flux convergence which feeds the ITCZ and the rainbelt but rather the subscale moisture flux and its convergence in the vertical. Over the Saharan latitudes, there is considerable convective flux of sensible heat, but not of latent heat. Over the ocean, deep convection in the ITCZ is weaker than over Africa, and it is consistently correlated with upward converging subscale moisture flux. The fields of the subscale vertical fluxes are coherent in space and time. It is argued from these results that the presented diagnostic model is potentially useful for testing parameterizations of convection in general circulation and climate models.With 19 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号