首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
We present the first results of measurements on solid particles performed at the Instituto de Astrof?´sica de Andaluc?´a (IAA) cosmic dust laboratory located in Granada, Spain. The laboratory apparatus measures the complete scattering matrix as a function of the scattering angle of aerosol particles. The measurements can be performed at a wavelength (λ) of 483, 488, 520, 568, or 647 nm in the scattering angle range from 3° to 177°. Results of special test experiments are presented which show that our experimental results for scattering matrices are not significantly contaminated by multiple scattering and that the sizes/shapes of the particles do not change during the measurements. Moreover, the measured scattering matrix for a sample of green clay particles is compared with measurements previously performed in the Amsterdam light scattering setup for the same sample. New measurements on a white clay sample at 488 and 647 nm are also presented. The apparatus is devoted to experimentally studying the angle dependence of scattering matrices of dust samples of astrophysical interest. Moreover, there is a great interest in similar studies of aerosols that can affect the radiative balance of the atmosphere of the Earth and other planets such as silicates, desert dust, volcanic ashes, and carbon soot particles.  相似文献   

2.
UBVRI observations of circular polarization in WW Vul are presented. A positive polarization of ~0.1% was detected with a signal-to-noise ratio from 3 to 5 in each of the bands and more than 5 when averaged over all five bands. This observed polarization roughly corresponds to a 1% circular polarization of the radiation scattered in a circumstellar disk, which is most likely attributable to the significant alignment of scattering nonspherical dust grains. Since grain alignment is possible only in a magnetic field, this result provides circumstantial evidence for the existence of a magnetic field in the circumstellar disk of WW Vul.  相似文献   

3.
Magnetohydrodynamic (MHD) equations are presented for the mixture of superfluid neutrons, superconducting protons and normal electrons believed to exist in the outer cores of neutron stars. The dissipative effects of electron viscosity and mutual friction resulting from electron-vortex scattering are also included. It is shown that Alfvén waves are replaced by cyclotron-vortex waves that have not been previously derived from MHD theory. The cyclotron-vortex waves are analogous to Alfvén waves with the tension arising from the magnetic energy density replaced by the vortex energy density. The equations are then put into a simplified form useful for studying the effect of the interior magnetic field on the dynamics. Of particular interest is the crust–core coupling time, which can be inferred from pulsar glitch observations. The hypothesis that cyclotron-vortex waves play a significant role in the core spin-up during a glitch is used to place limits on the interior magnetic field. The results are compared with those of other studies.  相似文献   

4.
Guy Consolmagno 《Icarus》1979,38(3):398-410
Charged dust grains in a turbulent magnetic field will see a Lorentz force due to the convection of the solar magnetic field past them at the solar wind velocity. Since the sign of this magnetic field is randomly varying, the direction of the force will be random, and the net effect will be to randomly scatter the orbital elements of these particles. The square roots of the mean square change in semimajor axis, inclination, and eccentricity are determined as a function of the particles' original orbital elements. Particles 3 μm in radius and smaller will have their motions strongly perturbed or dominated by Lorentz scattering. This scattering will have an effect comparable to, or greater than, the Poynting-Robertson effect on these particles for time scales comparable to their Poynting-Robertson lifetimes.  相似文献   

5.
A spacecraft that generates an electrostatic charge on its surface in a planetary magnetic field will be subject to a perturbative Lorentz force. Active modulation of the surface charge can take advantage of this electromagnetic perturbation to modify or to do work on the spacecraft’s orbit. Lagrange’s planetary equations are derived using the Lorentz force as the perturbation on a Keplerian orbit, incorporating orbital inclination and true anomaly for the first time for an electrostatically charged vehicle. The planetary equations reveal that orbital inclination is a second-order effect on the perturbation, explaining results found in earlier studies through numerical integration. All of the orbital elements are coupled, but the coupling notably does not depend on the magnitude of the electrostatic charge or on the strength of the magnetic field. Analytical expressions that characterize this coupling are tested with a propellantless escape example at Jupiter. A closed-form solution exists that constrains the set of equatorial orbits for which planetary escape is possible, and a sufficient condition is identified for escape from inclined orbits. The analytical solutions agree with results from the numerically integrated equations of motion to within a fraction of a percent.  相似文献   

6.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

7.
The magnetorotational instability (MRI) in axisymmetric rotating dusty plasmas with viscous effects is investigated by means of a three-component model MRI with a vertical weak magnetic field. Starting from the three-fluid equations and Maxwell’s equations, I derive the general linear dispersion relation governing local MRI. The dust rotational flow is assumed to have the same angular velocity as ions and electrons. The dispersion relation of two special cases, without viscosity and dust effects respectively, is discussed in detail by taking into account the high-frequency approximation in order to make the perturbation frequency larger than the ion cyclotron frequency. The numerical results demonstrate that both the viscosity and dust effects can prevent the MRI growth, and the dust-induced effects are shown to be especially significant.  相似文献   

8.
The paper presents the results of a new analysis of the data from the Magnetic Properties Experiment onboard the Mars Pathfinder Spacecraft. The spectral data from the extended visible region of material adhering to the magnets are presented as well as the time dependence of dust accumulation to the magnets. A new model is developed to estimate the magnetic properties of the accumulated dust. It is found that the optical reflection spectra of the magnetic dust differ slightly from the reflection of ground soil/dust in the vicinity of the lander. Several possible hypotheses are given to account for this difference. Magnetic dust has been removed from the magnets at least twice during the 80 sol mission by wind gusts, and it is suggested that this happens in a manner similar to sand blasting. A lower limit for the saturation magnetisation of the most magnetic particles is found to be 5 Am2/kg.  相似文献   

9.
The primary negative ion sources in comets are shown to be: for the inner coma—both polar photodissociation of HCN, electron attachment of OH and collisions with alkalis; in the vicinity of the nucleus—plasma, excavated during interplanetary dust impacts on the nucleus; for both the contaminated solar wind region and sporadic discharges in the non-homogeneous inner coma plasma—dissociative electron attachment and charge inversion during keV positive ion scattering by cometary dust are also significant sources. Negative ion abundance for Halley's Comet has been estimated to be from 10–6 to 10–10 of electron densities. However, this ratio may be more due to the formation of clusters A(H2O)n. Some possible cometary plasma effects, caused by negative ions, have also been discussed.  相似文献   

10.
The effect of nonthermal electrons on ion-temperature-gradient (ITG) driven modes is investigated in the presence of variable dust charge and ion shear flow. The dust charge fluctuating expression is obtained in the presence of kappa distributed electrons. A dispersion relation is derived and analyzed numerically by choosing space plasma parameters of Jupiter/Saturn magnetospheres. It is found that the presence of nonthermal electrons population reduces the growth rate of ITG mode driven instability. The effects of ion temperature, electron density and magnetic field variation on the growth rate of ITG instability are presented numerically. It is also pointed out that the present results will be useful to understand the ITG driven modes with variable dust charge and kappa distributed electrons, present in most of the space plasma environments.  相似文献   

11.
The Earth's middle atmosphere at altitudes of 80-95 km exhibits layered phenomena known as noctilucent clouds and polar mesosphere summer echoes. These structures are believed to be associated with the presence of large quantities of charged dust or aerosol particles. The sign of the charge depends on the material composition of the latter as well as the environment. The grains are normally composed of ice together with possible metallic impurities. Particles of pure ice are always charged negatively, but if the metal content is sufficiently high, they can become positive. The characteristics of self-organized structures on the dust acoustic time scale depend strongly on the sign of the charge, and the structures can appear as either electron (ion) density humps or dips. Such a physical distinction can be used for the identification and diagnostics of noctilucent clouds and polar mesosphere summer echoes.  相似文献   

12.
We construct an idealized spherically symmetric relativistic model of an exploding object within the framework of the theory of surface layers in GR. A Vaidya solution for a radially radiating star is matched through a spherical shell of dust to a Schwarzschild solution. The (incomplete) equations for the motion of the spherical shell of dust and the radiation density of the Vaidya solution, as given by the matching conditions, are reduced to a first-order system and a general analysis of the characteristics of the motion is given. This system of differential equations is completed, adding a relation between the unknowns which represents the simplest way to avoid an unphysical singularity in the motion. The results of a numerical integration of the equations are presented in two cases which we think may have some relationship to stellar explosions. A comparative set of results for other solutions is also given, and some possible generalizations of the model are pointed out.  相似文献   

13.
A new second-order solution to the two-point boundary value problem for relative motion about orbital rendezvous in one orbit period is proposed. First, nonlinear differential equations to describe the relative motion between a chaser and a target are presented considering the second-order terms in the gravity. Then, by regarding the second-order terms as external accelerations, we establish second-order state transition equations. Moreover, the J2 perturbations effects can also be considered in the state transition equations. Last, the initial relative velocity to fulfill a rendezvous is determined by solving the state transition equations. Numerical simulations show that the new second-order state transition equations are accurate. The second-order solution to the two-point boundary value problem on eccentric orbits is valid even if the relative range is farther than 500 km.  相似文献   

14.
It is suspected that the lunar exosphere has a dusty component dispersed above the surface by various physical mechanisms. Most of the evidence for this phenomenon comes from observations of “lunar horizon glow” (LHG), which is thought to be produced by the scattering of sunlight by this exospheric dust. The characterization of exospheric dust populations at the Moon is key to furthering our understanding of fundamental surface processes, as well as a necessary requirement for the planning of future robotic and human exploration.We present a model to simulate the scattering of sunlight by complex lunar dust grains (i.e. grains that are non-spherical and can be inhomogeneous in composition) to be used in the interpretation of remote sensing data from current and future lunar missions. We numerically model lunar dust grains with several different morphologies and compositions and compute their individual scattering signatures using the Discrete Dipole Approximation (DDA). These scattering properties are then used in a radiative transfer code to simulate the light scattering due to a dust size distribution, as would likely be observed in the lunar exosphere at high altitudes 10's of km. We demonstrate the usefulness and relevance of our model by examining mode: irregular grains, aggregate of spherical monomers and spherical grains with nano-phase iron inclusions. We subsequently simulate the scattering by two grain size distributions (0.1 and radius), and show the results normalized per-grain. A similar methodology can also be applied to the analysis of the LHG observations, which are believed to be produced by scattering from larger dust grains within about a meter of the surface.As expected, significant differences in scattering properties are shown between the analyses employing the widely used Mie theory and our more realistic grain geometries. These differences include large variations in intensity as well as a positive polarization of scattered sunlight caused by non-spherical grains. Positive polarization occurs even when the grain size is small compared to the wavelength of incident sunlight, thus confirming that the interpretation of LHG based on Mie theory could lead to large errors in estimating the distribution and abundances of exospheric dust.  相似文献   

15.
The results of a near-infrared ( J H K L P) imaging linear polarimetry survey of 20 young stellar objects (YSOs) in ρ Ophiuchi are presented. The majority of the sources are unresolved, with K -band polarizations, P K < 6 per cent. Several objects are associated with extended reflection nebulae. These objects have centrosymmetric vector patterns with polarization discs over their cores; maximum polarizations of P K > 20 per cent are seen over their envelopes. Correlations are observed between the degree of core polarization and the evolutionary status inferred from the spectral energy distribution. K -band core polarizations >6 per cent are only observed in Class I YSOs.
A 3D Monte Carlo model with oblate grains aligned with a magnetic field is used to investigate the flux distributions and polarization structures of three of the ρ Oph YSOs with extended nebulae. A ρ∝ r −1.5 power law for the density is applied throughout the envelopes. The large-scale centrosymmetric polarization structures are due to scattering. However, the polarization structure in the bright core of the nebula appears to require dichroic extinction by aligned non-spherical dust grains. The position angle indicates a toroidal magnetic field in the inner part of the envelope. Since the measured polarizations attributed to dichroic extinction are usually ≤10 per cent, the grains must either be nearly spherical or very weakly aligned. The higher polarizations observed in the outer parts of the reflection nebulae require that the dust grains responsible for scattering have maximum grain sizes 1.05 μm.  相似文献   

16.
The simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer. The simulated spectra are based on the results of integrations of the orbital evolution of particles under the gravitational influence of planets, the Poynting-Robertson drag, radiation pressure, and solar wind drag. Our results demonstrate that the differences in the line centroid position in the solar elongation and in the line width averaged over the elongations for different sizes of particles are usually less than those for different sources of dust. The deviation of the derived spectral parameters for various sources of dust used in the model reached maximum at the elongation (measured eastward from the Sun) between 90° and 120°. For the future zodiacal light Doppler shifts measurements, it is important to pay a particular attention to observing at this elongation range. At the elongations of the fields observed by WHAM, the model-predicted Doppler shifts were close to each other for several scattering functions considered. Therefore the main conclusions of our paper do not depend on a scattering function and mass distribution of particles if they are reasonable. A comparison of the dependencies of the Doppler shifts on solar elongation and the mean width of the Mg I line modeled for different sources of dust with those obtained from the WHAM observations shows that the fraction of cometary particles in zodiacal dust is significant and can be dominant. Cometary particles originating inside Jupiter's orbit and particles originating beyond Jupiter's orbit (including trans-neptunian dust particles) can contribute to zodiacal dust about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. The fraction of asteroidal dust is estimated to be ∼0.3-0.5. The mean eccentricities of zodiacal particles located at 1-2 AU from the Sun that better fit the WHAM observations are between 0.2 and 0.5, with a more probable value of about 0.3.  相似文献   

17.
We investigate the linear theory of Kelvin–Helmholtz instability at the interface between a partially ionized dusty outflow and the ambient material analytically. We model the interaction as a multifluid system in a planar geometry. The unstable modes are independent from the charge polarity of the dust particles. Although our results show a stabilizing effect for charged dust particles, the growth time-scale of the growing modes gradually becomes independent of the mass or charge of the dust particles when the magnetic-field strength increases. We show that growth time-scale decreases with increasing the magnetic field. Also, as the mass of the dust particles increases, the growth time-scale of the unstable mode increases.  相似文献   

18.
Assuming that the spin and magnetic axis of Jupiter are strictly parallel and that the grain charge remains constant we have derived two integrals of the 3D equations of motion of charged dust grains moving within the co-rotating regions of the Jovian magnetosphere taking into account both planetary gravitation and magnetospheric rotation. We then apply this model to study the fate of fine dust injected into the Jovian magnetosphere as a result of the tidal disruption of comet Shoemaker-Levy 9 during its first encounter with Jupiter in July 1992. This analysis, which uses the integrals of the equation of motion rather than the equation of motion itself as was done by Horanyi (1994), does not allow us to calculate the orbits or the orbital evolution of the grains. But it does allow us to construct the spatial regions to which the grains are confined, at least initially before evolutionary effects take over. We have chosen three points along the path of the disintegrating comet for the injection of dust and used two values for the uncertain floating potential of the dust in the inner Jovian magnetosphere. Grains can have three different fates, depending on their size, their acquired potential and their point of injection. While the smallest grains are quickly lost by collision with the planet at high latitudes independent of the sign of their charge, those in an intermediate but narrow size range, injected near the equatorial plane can be trapped in a region close to it, this being true for both positive and negative grains. While somewhat larger positive grains may be initially ejected outward by the co-rotational electric force, similar negative grains, pulled inward by this force collide with the planet at low latitudes. In all cases the largest grains, which are dominated by planetary gravity, initially escape from the inner magnetosphere by following in the path of the comet.Using a detailed time dependent numerical calculation of the jovicentric orbits of the charged dust debris of the disintegrating comet, that allows for variation in the grain potential, while also allowing for perturbations of the grain orbits due to solar radiation pressure and solar gravity Horanyi (1994) found that grains in the size range (1.5m <a < 2.5m) which initially make large excursions from the planet, will eventually form a ring in the radial range 4.5R J <r < 6R J . Our present analytical calculation cannot make such a prediction about the evolutionary fate of the dust debris. It can, however, estimate the size of the grains that are initially confined to regions near the points of injection, before evolutionary effects become important.  相似文献   

19.
The technique of photoclinometry has frequently been used to determine planetary topography without proper consideration of possible sources of error. Previous studies of error sources have been limited in extent and have overlooked the importance of factors such as atmospheric scattering and the choice of a surface photometric function. This paper adopts a thorough and more direct approach to error analysis, whereby known topography is compared with photoclinometric profiles derived from synthetic quantised reflectance scans.Instrumental and geometric sources of error are found to exert a minimal influence on profiles in practice, provided that sufficient care is taken in the selection of images and the extraction of scans from those images. Environmental factors — relating to the scattering properties of the surface and, if present, atmosphere — are far more important. It is found that a simple Lommel-Seeliger law is unlikely to be appropriate to the majority of planetary terrains, given its inability to model the effects of multiple scattering or unresolved macroscopic roughness. It is further demonstrated that a Minnaert function or combination of Lommel-Seeliger and Lambert laws may empirically compensate for the first of these phenomena but not the second; in this respect, Hapke's equation is a far superior model of surface optical properties. In the case of an atmosphere, the need to correct for scattering by aerosols or suspended dust becomes more acute as atmospheric opacity increases and as particle scattering becomes more forward-biased. To perform this correction, a model for the combined reflectance of surface and atmosphere must be used when deriving profiles.Two case studies — of a small impact crater on Triton and a dust-mantled basaltic lava flow on Mars - are presented here. Regarding the latter, the implications that errors in photoclinometric flow thickness measurements have for inferred lava rheology are examined. Conservative estimates of errors in yield strength and apparent viscosity easily exceed 100% when one of the simplest photometric models possible — a Lommel-Seeliger law — is used to derive a profile.In the light of these findings, strategies are suggested for improving the results obtained from photoclinometry in the future.  相似文献   

20.
During star formation, both infall and outflows are present around protostellar cores. Here we show solutions of a self-similar model that study the two flows with only one set of equations. We focus here on the effects of magnetic field and dust on solutions. Unmagnetized solutions have also been found. This shows that magnetic field is not the main driving mechanism of the circulation process. We have found that a reduction of magnetic field produces denser, slower and narrower outflows. When the opacity is less dominated by dust, density increases in the equatorial region, allowing larger accretion rates to occur. The comprehension of massive star formation could be related to this latter effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号