首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In Grand Bay National Estuarine Research Reserve (Grand Bay NERR), Mississippi, we used quantitative drop sampling in three common shallow estuarine habitats—low profile oyster reef (oyster), vegetated marsh edge (VME), and nonvegetated bottom (NVB)—to address the dearth in research comparing nekton utilization of oyster relative to adjacent habitats. The three habitats were sampled at two distinct marsh complexes within Grand Bay NERR. We collected a total of 633 individual fishes representing 41 taxa in 22 families. The most diverse fish family was Gobiidae (seven species) followed by Blennidae and Poeciliidae (three species each). We collected a total of 2,734 invertebrates representing 24 taxa in 11 families. The most diverse invertebrate family was Xanthidae (six species) followed by Palaemonidae (five species). We used ordination techniques to examine variation in species relative abundance among habitats, seasons, and sampling areas, and to identify environmental gradients correlated with species relative abundances. Our resulted indicated that oyster provided a similarly complex and important function as the adjacent VME. We documented three basic trends related to the importance of oyster and VME habitats: 1) Oyster and VME provide habitat for significantly more species relative to NVB, 2) Oyster and VME provide habitat for rare species, and 3) Several species collected across multiple habitats occurred at higher abundances in oyster or VME habitat. We also found that salinity, temperature, and depth were associated with seasonal and spatial shifts in nekton communities. Lastly, we found that the relative location of the two marsh complexes we studied within the context of the whole estuary may also explain some of the temporal and spatial differences in communities. We conclude that oyster habitat supported a temporally diverse and spatially distinct nekton community and deserves further attention in research and estuarine conservation efforts.  相似文献   

2.
The eastern oyster, Crassostrea virginica, plays an essential functional role in many estuarine ecosystems on the east and Gulf coasts of the USA. Oysters form biogenic reefs but also live on alternative intertidal substrates such as artificial surfaces and mangrove prop roots. The hypothesis tested in this study was that non-reef-dwelling oysters (i.e., those inhabiting mangrove, seawall, or restoration substrates) were similar to their reef-dwelling counterparts based upon a suite of biological parameters. The study was carried out at six sites in three zones in Tampa Bay on the west coast of Florida using monthly samples collected from October 2008–September 2009. The timing of gametogenesis and spawning, fecundity, and juvenile recruitment were the same for oysters in all four habitats. Oyster size (measured as shell height), density, and Perkinsus marinus infection intensity and prevalence varied among habitats. This study indicates that oysters on mangroves, seawalls, and oyster restoration substrates contribute larvae, habitats for other species, and likely other ecosystem benefits similar to those of intertidal oyster reefs in Tampa Bay. Oysters from alternative intertidal substrates should be included in any system wide studies of oyster abundance, clearance rates, and the provision of alternate habitats, especially in highly developed estuaries.  相似文献   

3.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

4.
The eastern oyster, Crassostrea virginica, is a prominent ecosystem engineer, whose reefs exhibit strikingly consistent morphologies at multiple spatial scales throughout its North American range. These distinct morphologies are thought to form by interactions of nascent reef structures with hydrodynamics. We carried out two field studies to determine if historical reef configurations applied in a restoration context would improve reef persistence and restoration outcomes. We collected seabed and water column observations across constructed reefs of three orientations representative of those found historically throughout the oyster’s range: parallel or perpendicular to tidal currents or circular. Areas adjacent to reefs were sites of fine sediment trapping, with lower flow velocities, evidence of particle settling, and more fine sediments on the seabed relative to off-reef reference sites. The water column above the reef crest exhibited higher acoustic backscatter, higher flow velocities, and larger particles in suspension, consistent with local erosion of flocculated fine sediment from the reef crest. Perpendicular reefs produced conditions that were more conducive to reef persistence and improved oyster performance, including high flow velocities and enhanced resuspension of sediments from the reef, compared to parallel or circular reefs. Particle trapping in areas between reefs has the potential to inhibit reef growth between existing reef structures, providing support for hypotheses of landscape-scale reef pattern formation. Oyster reef restoration efforts can benefit from this improved understanding of biophysical interactions arising from reef orientation that contribute to sediment dynamics on constructed oyster reefs.  相似文献   

5.
Oyster cultch was added to the lower intertidal marsh-sandflat fringe of three previously createdSpartina alterniflora salt marshes. Colonization of these created reefs by oysters and other select taxa was examined. Created reefs supported numerous oyster reef-associated faunas at equivalent or greater densities than adjacent natural reefs. Eastern oyster (Crassostrea virginica) settlement at one site of created reef exceeded that of the adjacent natural reefs within 9 mo of reef creation. After only 2 yr, harvestable-sizeC. virginica (>75 mm) were present in the created reefs along with substantial numbers ofC. virginica clusters. The created reefs also had a higher number of molluscan, fish, and decapod species than the adjacent natural reefs. After 2 yr the densities ofC. virginica, striped barnacle (Balanus amphitrite), scorched mussel (Brachidontes exustus), Atlantic ribbed mussel (Geukensia demissa), common mud crab (Panopeus herbstii), and flat mud crab (Eurypanopeus depressus) within the created reefs were equivalent to that of adjacent natural reefs. From these data it is evident that created oyster reefs can quickly acquire functional ecological attributes of their natural counterparts. Because the demand for oysters continues to increase in the face of dwindling natural resources, habitat creation techniques need to evolve and these approaches need to consider the ancillary ecological benefits reef creation may provide. Reef function as well as physical and ecological linkages of oyster reefs to other habitats (marsh, submerged aquatic vegetation, and bare bottom) should be considered when reefs are created in order to provide the best use of resources to maintain the integrity of estuarine systems.  相似文献   

6.
Subtidal accumulations of oyster shell have been largely overlooked as essential habitat for estuarine nekton. In southeastern U.S. estuaries, where oyster reef development is mostly confined to the intertidal zone, eastern oyster (Crassostrea virginica) shell covered bottoms are often the only significant source of hard subtidal structure. We characterized and quantified nekton use of submerged shell rubble bottoms, and compared it to use of intertidal reefs and other subtidal bottoms in the North Inlet estuary, South Carolina. Replicate trays (0.8 m2) filled with shell rubble were deployed in shallow salt marsh creeks, and were retrieved after soak times of 1 to 25 days from May 1998 to March 2000. Thirty six species of fishes, representing 21 families, were identified from the 455 tray collections. Water temperature, salinity, soak time and the presence of a shell substrate all affected the catch of fishes in the trays. Catches during the warmer months were two to five times greater than those during the winter. Fishes were present in 98% of the trays with an overall average of 5.7 fish m?2. The assemblage was numerically dominated by small resident species including naked goby (Gobiosoma bose), oyster toadfish (Opsanus tau), and crested blenny (Hypleurochilus geminatus). Transient species accounted for 23% of all individuals and 62% of the total biomass due to the presence of relatively large sheepshead (Archosargus probatocephalus) and black sea bass (Centropristis striata). Both the transient and resident species displayed distinct periods of recruitment and rapid growth from April to October. Lower abundances of juvenile gobies and blennies during 1998 were attributed to long periods of depressed salinity caused by high rainfall associated with El Niño conditions in spring. Crabs and shrimps, which were often more abundant than the fishes, accounted for comparable biomass in the tray collections. In comparisons of subtidal tray and trawl catches, trays yielded 10 to 1,000 fold higher densities of some demersal fish groups. Comparisons of intertidal and subtidal gear catches indicated that many species remain in the subtidal shell bottom at all stages of the tide. This study suggests that subtidal shell bottom may be essential fish habitat for juvenile seabass, groupers, and snappers and that it may be the primary habitat for a diverse assemblage of ecologically important resident fishes and crustaceans. Given the high levels of nekton use and the areal extent of oyster shell bottoms in eastern U.S. and Gulf estuaries, increased attention to protection and restoration of these areas appears justified.  相似文献   

7.
Few studies concerning tide-restricted and restoring salt marshes emphasize fishes and decapod crustaceans (nekton) despite their ecological significance. This study quantifies nekton utilization of three New England salt marshes under tide-restricted and restoring conditions (Hatches Harbor, Massachusetts; Sachuest Point and Galilee, Rhode Island). The degree of tidal restriction differed among marshes allowing for an examination of nekton utilization patterns along a gradient of tidal restriction and subsequent restoration. Based on sampling in shallow subtidal creeks and pools, nekton density and richness were significantly lower in the restricted marsh compared to the unrestricted marsh only at the most tide-restricted site (Sachuest Point). The dissimilarity in community composition between the unrestricted and restricted marsh sites increased with more pronounced tidal restriction. The increase in nekton density resulting from tidal restoration was positively related to the increase in tidal range. Species richness only increased with restoration at the most tide-restricted site; no significant change was observed at the other two sites. These patterns suggest that only severe tidal restrictions significantly reduce the habitat value of New England salt marshes for shallow subtidal nekton. This study suggests that the greatest responses by nekton, and the most dramatic shift towards a more natural nekton assemblage, will occur with restoration of severely restricted salt marshes.  相似文献   

8.
The restoration of dead/degraded oyster reefs is increasingly pursued worldwide to reestablish harvestable populations or renew ecosystem services. Evidence suggests that oysters can improve water quality, but less is known about the role of associated benthic sediments in promoting biogeochemical processes, such as nutrient cycling and burial. There is also limited understanding of if, or how long postrestoration, a site functions like a natural reef. This study investigated key biogeochemical properties (e.g., physiochemical properties, nutrient pools, microbial community size and activity) in the sediments of dead reefs; 1-, 4-, and 7-year-old restored reefs; and natural reference reefs of the eastern oyster, Crassostrea virginica, in Mosquito Lagoon (FL, USA). Results indicated that most of the measured biogeochemical properties (dissolved organic carbon (C), NH4 +, total C, total nitrogen (N), and the activity of major extracellular enzymes involved in C, N, and phosphorus (P) cycling) increased significantly by 1-year postrestoration, relative to dead reefs, and then remained fairly constant as the reefs continued to age. Few differences were observed in biogeochemical properties between restored reefs of any age (1 to 7 years) and natural reference reefs. Variability among reefs of the same treatment category was often correlated with differences in the number of live oysters, reef thickness, and/or the availability of C and N in the sediments. Overall, this study demonstrates the role of live intertidal oyster reefs as biogeochemical hot spots for nutrient cycling and burial and the rapidity (within 1 year) with which biogeochemical properties can be reestablished following successful restoration.  相似文献   

9.
Oyster reefs (Crassostrea virginica) supply important ecosystem services to estuarine habitats in the northern Gulf of Mexico, but little is known of the role of fish predators in controlling their structure or areal cover on soft sediments. At two sites and during fall and spring, we employed gill nets and trot lines to remove black drum (Pogonias cromis) from experimental reefs, and assessed oyster survival in comparison to control reefs. Numbers and biomass of black drum removed from reefs varied seasonally, among sites, and among removal methods. In the fall, black drum were rare at one site and abundant at the other, but did not significantly lower oyster survival on control reefs at either site. In the spring, black drum were common at both sites, and significantly lowered oyster survival on control reefs. Oysters and epizoic hooked mussels comprised roughly a third of the fishes’ diet, and oyster mortality was closely related to the percentage of drum feeding on oysters. There was little evidence of mortality from other predators of seed oysters like stone crabs or Southern oyster drills, and a repeated measures analysis of variance indicated black drum biomass was significantly depressed on experimental reefs during the experiments. Black drum thus appear to be potentially important predators on oyster reefs, but more work needs to be done on what factors explain the temporal and spatial variation in their abundance and oyster consumption.  相似文献   

10.
The ability of oysters to remove large quantities of particulates from the water column, thereby potentially improving water quality, has been cited as one of the reasons for oyster reef restoration. However, this ability has not yet been effectively demonstrated in the field. As part of the Alabama Oyster Reef Restoration Project, this study was designed to assess impacts of restored eastern oyster (Crassostrea virginica) reefs on primary production, nutrient dynamics, and water quality in shallow tidal creeks. Using a Before–After-Control–Impact (BACI) design, we monitored tidal creeks around Dauphin Island, AL, for changes induced by the introduction of oyster reefs. Reef placement resulted in increased ammonium (NH4+) in two of the three experimental creeks. Interestingly, oyster reefs did not seem to reduce water column particulates or have an impact on phytoplankton or microphytobenthic biomass or productivity. We do not believe that our data discount the importance and/or usefulness of oysters in modifying the water column. Rather, we acknowledge that it is difficult to detect these impacts/environmental services in this type of system (i.e., a tidal creek system), because they seem to be very localized and short-lived (i.e., not ecologically relevant on a creek-wide scale). This study highlights the need to consider location and habitat in planning oyster restoration projects. Also, it demonstrates that the types, magnitudes, and spatial extent of changes in ecosystem services that should be expected after reef restoration might need to be re-evaluated.  相似文献   

11.
An important ecological role ascribed to oysters is the transfer of materials from the water column to the benthos as they feed on suspended particles (seston). This ecosystem service has been often touted as a major reason for many oyster restoration efforts, but empirical characterization and quantification of seston removal rates in the field have been lacking. Changes in chlorophyll a (chl a) concentrations in the water column were measured in May 2005 and June 2006 in South Carolina using in situ fluorometry and laboratory analysis of pumped water samples taken upstream and downstream as water flowed over natural and constructed intertidal oyster reefs. Both methods gave similar results overall, but with wide variability within individual reef datasets. In situ fluorometer data logged at 10 to 30-s intervals for up to 1.3 h over eight different reefs (three natural and five constructed) showed total removal (or uptake) expressed as % removal of chl a ranging from −9.8% to 27.9%, with a mean of 12.9%. Our data indicate that restored shellfish reefs should provide water-quality improvements soon after construction, and the overall impact is probably determined by the size and density of the resident filter feeder populations relative to water flow characteristics over the reef. The measured population-level chl a removal was converted to mean individual clearance rates to allow comparison with previous laboratory studies. Although direct comparisons could not be made due to the small size of oysters on the study reefs (mean shell height, 36.1 mm), our calculated rates (mean, 1.21 L h−1) were similar to published laboratory measured rates for oysters of this size. However, the wide variability in measured removal by the oyster reefs suggests that individual oyster feeding rates in nature may be much more variable than in the laboratory. The proliferation of ecosystem-level models that simulate the impacts of bivalves on water quality based only on laboratory-feeding measurements underscores the importance of further research aimed at determining ecologically realistic feeding rates for oysters in the field. Because in situ methods provide many replicate measurements quickly, they represent a potentially powerful tool for quantifying the effects of oyster reefs, including all suspension-feeding taxa present, on water quality.  相似文献   

12.
The Suwannee River watershed is one of the least developed in the eastern United States, but with increasing urbanization it is facing potential long-term alterations in freshwater flow to its estuary in the Gulf of Mexico. The purpose of this study was to develop biological indicators of oyster reef state along a natural salinity gradient in the Suwannee River estuary in order to allow the rapid assessment of the effect of changing freshwater input to this system. Percent cover and density of three size classes of living oysters, as well as the abundance of several predominant reef-associated invertebrates, were measured along a broad salinity gradient in the estuary and were correlated with salinity estimates from a long-term database for the preceding 12–24 mo. All eastern oyster,Crassostrea virginica, parameters (percent cover and density of three size classes) were significantly and negatively related to salinity. Data from samples collected near the lower intertidal were more closely dependent upon salinity than were samples from the higher intertidal at the same sites. Salinity differences were most closely reflected in differences in total oyster cover. This relationship corresponded with a general decline in oyster habitat with increasing distance from the mouth of the Suwannee River. Species richness was significantly and positively correlated with allC. virginica parameters (percent cover and density of three size classes), but the relationship explained only about half the variability. Density data of the hooked mussel,Ischadium recurvum, and a mud crab,Eurypanopeus depressus, were positively and strongly correlated withC. virginica parameters, likely reflecting the abundance of habitat provided byC. virginica shells. All of the biological indicators measured responded similarly along the salinity gradient, indicating they provide reliable indices of the effect of changing salinities in the Suwannee River estuary over the previous 1 or 2 yr. Some areas of positive relief defined as reefs 30 years ago are no longer oyster habitat, suggesting an ongoing decline, but nearshoreC. virginica were abundant. *** DIRECT SUPPORT *** A02BY003 00002  相似文献   

13.
Structure and temporal variability in nekton communities were examined for four small brackish creeks along a major tributary (Adams Creek) of the Neuse River estuary, North Carolina during May–September 1994. An inverse salinity gradient was observed along Adams Creek with highest values in the most upstream creek due to a manmade channel connecting the creek to the Newport River estuary. The nekton communities of the four tributaries were similar with some differences in relative abundance of individual species and timing of recruitment and migrations. Bay anchovies (67%), spot (19%), and brown shrimp (6%) were the most abundant species, with the top ten species accounting for 98% of the total catch. The transport of high salinity water (and presumably nekton larvae) into the headwaters of Adams Creek via the canal appeared to have a strong influence on the nekton community; the nekton community present in the Adams Creek system resembled communities in mesohaline waters closer to the outer banks rather than those in an adjacent creek along the Neuse River estuary (South River estuary). Cluster analysis indicated nekton in the creeks could be grouped into early and late season assemblages. Canonical correspondence analysis suggested that neither the creeks nor the dominant species were strongly related to any measured environmental variables indicating habitat suitability was similar regardless of the differences in watershed activities among the four creeks.  相似文献   

14.
Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.  相似文献   

15.
A primary goal of many coastal restoration programs is to increase nekton habitat in terms of both quantity and quality. Using shallow water ponds rehabilitated with a technique called marsh terracing, we examined the quality of nekton habitat created, using and comparing several metrics including nekton density and diversity, functional group composition, and weight-length relationships as indirect measures of habitat quality. We examined three paired terraced and unterraced marsh ponds in southwest Louisiana. Nekton, submerged aquatic vegetation (SAV), and soil and water quality variables were sampled bimonthly from April 2004 through April 2005 at four subtidal habitat types: terraced nearshore, terraced open water, unterraced nearshore, and unterraced open water. Results indicate that terraced ponds had increased the habitat value of degrading unterraced ponds over open water areas for estuarine nekton; nekton density and richness were similar between terraced and unterraced nearshore habitat types, but greater at all nearshore as compared to open water sites. Analysis of the distribution of nekton functional groups and weight:length ratios indicates the terraced and unterraced pond habitats were not functioning similarly: distribution of nekton functional groups differed significantly between habitat types with greater percentages of benthic-oriented species at unterraced open water habitats and higher percentage of open water species in terraced ponds as compared to unterraced ponds, and two of the six numerically dominant fish species had greater weight-length relationships in unterraced ponds as compared to terraced ponds. This lack of functional equivalency may be attributed to environmental differences between terraced and unterraced ponds such as water depth or SAV biomass, or the relatively young age of the terraces studied, which may not have allowed for the development of some critical habitat variables, such as soil organic matter that was found to be significantly lower in terraced versus unterraced ponds (p < 0.05). To properly assess the ecological equivalency of restored or rehabilitated sites for nekton requires that we move beyond measures of nekton density, biomass, and diversity and incorporate measures of functional equivalency, including habitat measures.  相似文献   

16.
The abundances of the xanthid crabsPanopeus herbstii andEurypanopeus depressus were examined relative to surface oyster shell cover, surface oyster cluster volume, subsurface shell content, substrate sand and silt composition, and oyster reef elevation. During August 1986 through July 1987, xanthid crabs were collected monthly from twelve 0.25 m2×15 cm deep quadrats, during low tide, from intertidal oyster reefs in Mill Creek, Pender County, North Carolina, USA, with respective quadrat details recorded. The abundance ofP. herbstii, and to a lesser degreeE. depressus, was positively correlated with surface shell cover. The abundance ofE. depressus, and to a lesser degreeP. herbstii, was positively correlated with surface cluster volume. The majority ofP. herbstii inhabited the subsurface stratum of the oyster reef, whereas the majority ofE. depressus inhabited the cluster stratum. Seasonality (i.e., temperature) appeared to influence the strata habitation of both species, with a higher incidence of cluster habitation during warmer months and a lower incidence during colder months. Crab abundance was not related to other factors examined, such as subsurface shell, substrate sand and silt composition, or elevation within the oyster reef. The analyses show thatP. herbstii andE. depressus have partitioned the intertidal oyster reef habitat, withE. depressus exploiting surface shell clusters andP. herbstii the subsurface stratum.  相似文献   

17.
The importance of intertidal estuarine habitats, like salt marsh and oyster reef, has been well established, as has their ubiquitous loss along our coasts with resultant forfeiture of the ecosystem services they provide. Furthering our understanding of how these habitats are evolving in the face of anthropogenic and climate driven changes will help improve management strategies. Previous work has shown that the growth and productivity of both oyster reefs and salt marshes are strongly linked to elevation in the intertidal zone (duration of aerial exposure). We build on that research by examining the growth of marsh-fringing oyster reefs at yearly to decadal time scales and examine movement of the boundary between oyster reef and salt marsh at decadal to centennial time scales. We show that the growth of marsh-fringing reefs is strongly associated to the duration of aerial exposure, with little growth occurring below mean low water and above mean sea level. Marsh-shoreline movement, in the presence or absence of fringing oyster reefs, was reconstructed using transects of sediment cores. Carbonaceous marsh sediments sampled below the modern fringing oyster reefs indicate that marsh shorelines within Back Sound, North Carolina are predominantly in a state of transgression (landward retreat), and modern oyster-reef locations were previously occupied by salt marsh within the past two centuries. Cores fronting transgressive marsh shorelines absent fringing reefs sampled thinner and less extensive carbonaceous marsh sediment than at sites with fringing reefs. This indicates that fringing reefs are preserving carbonaceous marsh sediment from total erosion as they transgress and colonize the exposed marsh shoreline making marsh sediments more resistant to erosion. The amount of marsh sediment preservation underneath the reef scales with the reef’s relief, as reefs with the greatest relief were level with the marsh platform, preserving a maximum amount of carbonaceous sediments during transgression by buffering the marsh from erosional processes. Thus, fringing oyster reefs not only have the capacity to shelter shorelines but, if located at the ideal tidal elevation, they also keep up with accelerating sea-level rise and cap carbonaceous sediments, protecting them from erosion, as reefs develop along the marsh.  相似文献   

18.
A 2-year period with flood versus drought conditions provided the opportunity to examine the effects of flood disturbance on subtidal eastern oyster Crassostrea virginica biology and population dynamics in a south Texas estuary. Oysters were sampled monthly in 2007 and 2008 to examine the impacts of changing environmental conditions on oyster populations. Oysters were also examined quarterly for the presence of Perkinsus marinus. Filtration rates were calculated as a function of oyster size, temperature, salinity, and total suspended solids. Flood events in 2007 caused temporary reductions in salinity and were associated with reductions in oyster abundance, spat settlement, disease levels (weighted prevalence and percent infection), and filtration rates. Oyster populations had generally recovered within 1 year’s time—the oysters were younger and smaller but were just as abundant as pre-flood levels. The rapid return of oysters to pre-flood abundance levels is attributed in part to the ability of oysters in Gulf coast estuaries to spawn multiple times in a single season and in part to their relatively high growth rates. Although flood disturbance may temporarily reduce or destroy oyster populations, the ability of the Mission–Aransas Estuary to retain freshwater pulses within the system and maintain low salinities that are unfavorable for predators and disease can facilitate oyster population recovery. Episodic flood events appear to play a critical role in promoting long-term oyster population maintenance in the Mission–Aransas Estuary. The response of oysters to changing environmental conditions over the short term provides some insights into the potential long-term effects of changing climate.  相似文献   

19.
The fish assemblages of two South Carolina estuarine tide pools located in the North Edisto River were sampled from June to October 1977, and during June and July 1978, by haul seine, lift net and channel net. The nekton was dominated numerically byFundulus heteroclitus, Leiostomus xanthurus, Menidia menidia andAnchoa mitchilli. Oyster reef areas were dominated numerically byGobiosoma bosci andF. heteroclitus. The relative abundance of tide pool fishes differs from deep water areas of the North Edisto River as described from otter trawls, but is similar to that described by others for South Carolina tidal creeks.  相似文献   

20.
The effects of location, salinity, and depth on recruitment and growth of the eastern oyster Crassostrea virginica in Pamlico and Core sounds, North Carolina, were investigated from 1988 to 1990. We measured length and density of spat settling on oyster cultch deployed at deep (~3 m) and shallow (~1 m) depths at six sites in areas with low salinity and six sites in areas with high salinity. These data were compared with similar data taken at some of these sites by the North Carolina Division of Marine Fisheries since 1981 as part of their cultch planting program. Recruitment was generally greater in the high salinity sites, compared to the low salinity sites. Recruitment was less at shallow depths compared to deeper depths. In all three years the highest recruitment occurred in August and September, corresponding to the months of maximum water temperature. Recruitment was highly variable in space and time, but appeared to diminish from 1988 to 1990. Recruitment was reduced by sedimentation and a variety of sessile organisms. All sites appeared to have a similar potential for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号