首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upwelling coastal systems can be used to understand how dissolved oxygen and biological productivity control the accumulation of redox-sensitive metals in marine sediments. The aluminium (Al), cadmium (Cd), iron (Fe), nickel (Ni), molybdenum (Mo), vanadium (V), total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS) contents in surficial sediment collected from different water depths (30, 70, and 120?m) in three northern Chilean bays influenced by coastal upwelling and oxygen minimum zones (OMZs) were measured. Principal component analysis (PCA), cluster analysis, and Spearman?s rank correlation were used to identify the mechanisms responsible for the redox-sensitive metal accumulation. The content of redox-sensitive metals and organic components in sediment increased with increasing water column depth, whereas lithogenic metals decreased. In the Mejillones del Sur and Caldera bays, the enrichment factors of the redox-sensitive metals showed enrichment for all metals with depth. The Cd and V enrichments are mainly the product of biogenic flow to the seabed, and the Mo and Ni enrichments are due to preservation under low subsurface oxygen conditions. Sulfate reduction is not an important mechanism in the accumulation of redox-sensitive metals in the sediment of the three bays. The PCA showed that the behaviors of the redox-sensitive metals and organic components reflect differences in the effects of the OMZ in sediment along the coast of northern Chile, with a more intense OMZ in Mejillones del Sur bay and weaker OMZs in Caldera and Inglesa bays. However, the high degree of enrichment in redox-sensitive metals in Caldera Bay can be attributed to the intense activity of the mining industry near the bay, a situation that produces geochemical behavior similar to that observed in Mejillones del Sur Bay.  相似文献   

2.
Current study presents the application of chemometric techniques to comprehend the interrelations among sediment variables whilst identifying the possible pollution source at Langat River,Malaysia.Surface sediment samples(0-10 cm)were collected at 22 sampling stations and analyzed for total metals(~(48)Cd,~(29)Cu,~(30)Zn,~(82)Pb),pH,redox potential(Eh),salinity,electrical conductivity(EC),loss on ignition(LOI)and cation exchange capacity(CEC).The principal component analysis(PCA)scrutinized the origin of environmental pollution by various anthropogenic and natural activities:four principal components were obtained with 86.34%(5 cm)and88.34%(10 cm).Standard,forward and backward stepwise discriminant analysis effectively discriminate 2variables(84.06%)indicating high variation of heavy metals accumulation at both depth.The cluster analysis accounted for high input of Zn and Pb at LA8,LA 10,LA 11 and LA 12 that mergers three(5 cm)and four(10cm)into clusters.This is consistent with the contamination factor(C_1)that shows high Cd(LA 1)and Pb(LA 7,LA 8,LA 10,LA 11 and LA 12)contaminations at 5cm.These indicate that Pb and Zn are the most bioavailable metals in the sediment with significant positive linear relationship at both sediment depths.Therefore,this approach is a good indication of environmental pollution status that transfers new findings on the assessment of heavy metals by interpreting large complex datasets and predicting the fate of heavy metals in the sediment.  相似文献   

3.
In the recent years,the Red Sea coast of Yemen has been severely affected by intensive anthropogenic activities.The current study constitutes a thorough inquiry to evaluate the extent of heavy metals pollution in Yemen's Red Sea coast sediment and identifies the possible sources of pollution.The concentrations of five metals(copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),and nickel(Ni))collected from nine sites along the Red Sea coast of Yemen were assessed using an atomic absorption spectrophotometer(ASS).Sediment quality indices,such as the sediment quality guidelines(SQGs),potential ecological risk(RI),contamination factor(CF),pollution load index(PLI),geoaccumulation index(Igeo),and modified degree of contamination(mCd)were computed.In addition,multivariate statistical techniques(principal component analysis(PCA),hierarchical cluster analysis,and Pearson's correlation analysis)were applied to identify the potential sources of metals.The mean concentrations of Cu,Zn,Cd,Pb,and Ni were 51.3,61.9,4.02,9.9,and 33.4 mg/kg dry wt,respectively.The spatial distribution revealed that the metals concentrations were high at the middle zone and low southward of Hodeida city.According to the SQGs,the adverse biological effects of metals were occasionally associated with Cu and Cd,frequently associated with Ni,and not expected to occur with Zn and Pb.The RI indicated that the sediment of the studied sites pose low(RI<50)to considerable(100≤RI<200)ecological risk.The mean effect range-median quotient(M-ERM-Q)indicated that the combination of the studied metals had the toxicity probability of 21%at all studied sites.Igeo and CF indicated that the metals concentrations were in the descending order of:Zn>Ni>Pb>Cd>Cu,whereas the PLI and mCd indicated that Ras Isa(Site 5)and Urj village(Site 6)were the most polluted sites.PCA,cluster analysis,and correlation analysis found that Cd,Pb,and Ni mostly originated from anthropogenic sources while Cu and Zn were mainly derived from natural sources.Thus,it is evident that the intensive anthropogenic activities had negative influence on metals accumulation in the sediment of the Red Sea coast of Yemen leading to detrimental effects to the whole ecosystem.These comprehensive findings provide valuable information and data for future monitoring studies regarding heavy metals pollution and sediment quality at the Red Sea coast of Yemen.  相似文献   

4.
Sediment from twelve stations was sampled from the Tupilipalem Coast, southeast coast of India, and the presence of a set of heavy metals was established including iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn) and cadmium (Cd). The heavy metals were assessed by factor analysis, the results of which showed positive and/or negative correlations among Fe, Mn, Cr, Cu, Ni, Pb, Zn, and Cd. Factor analysis also indicated that heavy metals in the sediments of the study area have different natural and anthropogenic sources. Similarly, a sediment pollution assessment was done using the Geoaccumulation Index (Igeo), Enrichment Factor (EF), and Pollution Load Index (PLI). The Geoaccumulation Index indicated that the surface sediment of the Tupilipalem Coast was extremely contaminated with Fe, Mn, Cr, Cu, Ni, Pb, and Zn. The calculation of enrichment factors showed a significant enrichment with respect to Pb, Zn, and Cd and a moderate enrichment with Cr, Cu, and Ni. The falling trend of average contents’ enrichment factors is Cd> Pb> Zn> Cu> Cr> Ni> Mn> Fe. The PLI values of the Cd show higher (>1) values due to the influence of distinct external sources like agricultural runoff, industrial activities, and other anthropogenic inputs. Ninety two percent of heavy metals under study showed the highest concentrations at station TP-5 where the Buckingham Canal and other agricultural and aquacultural effluents connect with the Bay of Bengal. This location is the second inlet which is periodically closed and it seemed that these parts of the study area are heavily affected by anthropogenic pollution.  相似文献   

5.
The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb metals in soil samples (N = 21) were determined by flame atomic absorption spectrometry. The modified Community Bureau of Reference (BCR) sequential extraction procedure (three‐step) was used in order to evaluate mobility, availability, and persistence of heavy metals in soil samples taken from an agricultural area in Erciyes University Campus. The operationally defined fractions isolated using the BCR procedure were: acid extractable, reducible, and oxidizable. The mobility sequence based on the sum of the BCR sequential extraction stages was: Mn (70.2%) > Pb (62.9%) > Ni (26.7%) > Cr (15.4%) > Zn (14.4%) > Cu (12.9%) > Fe (1.24%). Multivariate statistical analysis was used to define the possible origin of heavy metals in soils. Correlation analysis, principal component analysis (PCA), and cluster analysis (CA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of heavy metals. PCA results revealed that the sampling area was mainly influenced from three sources, namely natural, airborne emissions from domestic heating and traffic.  相似文献   

6.
Total metal concentrations (Cr, Ni, Cu, Zn, and Pb), acid volatile sulfide and simultaneously extracted metals (AVS-SEM), and heavy metal fractionation were used to assess the heavy metals contamination status and ecological risk in the sediments of the Pearl River Estuary (PRE) and adjacent shelf. Elevated concentrations at estuarine sites and lower concentrations at adjacent shelf sites are observed, especially for Cu and Zn. Within the PRE, the concentration of heavy metals in the western shore was mostly higher than that in the middle shore. The metals from anthropogenic sources mainly occur in the labile fraction and may be taken up by organisms as the environmental parameters change. A combination of total metal concentrations, metal contamination index and sequential extraction analysis is necessary to get the comprehensive information on the baseline, anthropogenic discharge and bioavailability of heavy metals.  相似文献   

7.
Surface sediment from three polluted sites within Cork Harbour, Ireland, and from a relatively clean reference site were collected and analysed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), organotins (OTs), and heavy metals. PAHs were determined to be the most abundant class of contaminant. Concentrations of the sum (Sigma) of the 21 PAHs measured from the Harbour sites (2877.70 ng g(-1), 1000.7 ng g(-1) and 924.40 ng g(-1) dry weight respectively) were significantly higher than that of the sediment from the reference site (528.30 ng g(-1) dry weight). An inner harbour site, Douglas being the more contaminated of the three harbour sites. A similar pattern was observed with the other contaminants however, these compounds, with the exception of the heavy metals, all tended to be detected at concentrations on or below detection limits.  相似文献   

8.
The ability of seven hyperaccumulator macrophytes which grow naturally in the heavy metal contaminated channels of three different industries (Hindustan Aeronautical Ltd., Eveready Ltd., and Scooter India Ltd.) to accumulate heavy metals was recorded. All these industries use electroplating processes in their manufacturing and are located in the inner area of Lucknow City, U.P., India. Of the three industries monitored, effluent released from Eveready Ltd. contained the highest concentration of heavy metals. In general, accumulations of heavy metals depend upon the plant species and the metal concentration in the media. All plant samples showed heterogeneous metal accumulations, except for Fe or Cd. It was observed that some plant species accumulated high level of metals, e. g., Eichhornnia crassipes for Fe (4052.44 μg/g), Mn (788.42 μg/g), and Cu (315.50 μg/g), and Spirodela polyrhiza for Cd (12.75 μg/g), Pb (20.25 μg/g), and Cr (128.27 μg/g), even when the metal concentrations were not high in the effluent. In summary, these two plants were found to be the best accumulators at each contaminated site. The results will be helpful in the selection of plant species which can be used as bioaccumulators or bioindicators.  相似文献   

9.
江苏省五大湖泊水体重金属的监测与比较分析   总被引:4,自引:2,他引:2  
2001—2011年(不含2004年)10年间对江苏省五大湖泊(太湖、滆湖、洪泽湖、高宝邵伯湖和骆马湖)的水体重金属浓度进行长期定点监测,按系统分组资料进行方差分析,以比较各重金属浓度在湖泊间的差异显著性,并在此基础上应用多指标综合评价法(TOPSIS法)对5个湖泊水体重金属进行综合比较.结果表明:除铜浓度外,5个湖泊间铅、镉、汞和砷4个指标浓度均存在极显著差异;5种重金属浓度湖泊内站位间均差异不显著;铅、镉和汞浓度站位内年份间差异显著或极显著.TOPSIS分析结果表明,总体而言高宝邵伯湖水体重金属污染程度最小,骆马湖水体重金属污染程度最大,洪泽湖、太湖和滆湖水体重金属污染综合评价优劣相当.  相似文献   

10.
Shells of the pod razor shell (Ensis siliqua) from 13 locations around the west coast of mainland Britain have been analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for a range of trace metals including Zn, Cd, Pb, U, Ba, Sr and Mg. The trace metal record in these shells is a proxy record for changes in seawater chemistry during the 1990s. Regional variations exist in the median concentrations of the analysed metals. Barium concentrations are related to increased productivity from sewage sludge dumping at sea. Strontium shows a local relationship to salinity, but there is no clear relationship over the study area, instead high Sr is often associated with high Ba, and may reflect ontogenetic factors such as growth rate. Magnesium shows a seasonal variation within individual shells and can be used to calculate sea surface temperatures from groups of shells. Contaminant metals show a clear regional relationship with known sources, thus high Pb and Zn are typically associated with former metal mining areas (e.g. Cardigan Bay, Anglesey), and high Pb, Zn, Cd and U are associated with industrial activity in Liverpool Bay. Anomalies such as the high U in shells from northern Scotland cannot at present be explained. A seasonal variation of Pb is also seen in Cardigan Bay and Liverpool Bay, relating to increased winter fluxes of these metals to the marine environment. The regional distribution of these metals is consistent with known sources of contamination and patterns of seawater migration around the coast of Britain.  相似文献   

11.
The objective of this study was to evaluate the concentration and distribution of heavy metals in the sediments of Paulo Gorski Lake, as well as the metals’ bioavailability and potential ecological risk, and to define the anthropogenic and natural heavy metal contributions to the lake. The chemical elements calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), and zinc (Zn) were quantified by flame atomic absorption spectrophotometry with two extraction methods to quantify the bioavailable and non-bioavailable fractions. The data were evaluated using multivariate statistics and sediment quality indices. All sediment collection points (S1, S2, S3, S4 and S5) are different in terms of the concentration of heavy metals, except for S4 and S5, which were statistically equal. The bioavailable fraction of the elements in the sediment follows the sequence Pb>Cu>Mn>Zn>Ni>Cr>phosphorus (P) for all points. The elements Co, Cr, Pb, and Zn showed moderate to considerable contamination at all points. Only points S3 and S5 had moderate ecological risk. Urbanization has been affecting Paulo Gorski Lake via the input of chemical elements, especially Co and Pb. The points most affected by heavy metal contamination are S3 and S5 when the sedimentological sensitivity factor is considered. The lake has high hydrodynamics, causing some of the contaminants that enter the system to leave it, leading to potential negative impacts downstream.  相似文献   

12.
The dissolved (<0.40 γm) fraction of water samples from Newark Bay, New Jersey was analysed for Zn, Cu and Pb content by differential pulse anodic stripping polarographic techniques. In the dissolved fraction, non-labile forms of Zn, Cu and Pb exist as shown by differential pulse anodic stripping voltammetry analysis on acidified samples and acidified-UV irradiated samples. The particulate fraction (>;0.40 μm) contains metals in the form of sulphides (Fe, Zn, Cu, Mn), oxides and oxyhydroxides (Si, Al, Fe, Cu, Ni, Sn), phosphate (Ca, Ce, La), clay minerals (Fe, Zn, Cu, Ti) and carbonaceous material (Fe, Cu, Zn) as demonstrated by X-ray microanalysis. The solid phases are likely present in colloidal form in the dissolved fraction of the water column as well. The forms of the metals in the water column are partially due to the resuspension of bottom sediments by dredging and natural processes, to sewage outfall and to natural geochemical processes.  相似文献   

13.
《国际泥沙研究》2020,35(3):269-277
The content of 19 metals(chromium,cobalt,nickel,strontium,arsenic,magnesium,barium,cesium,gallium,rubidium,uranium,vanadium,zinc,lead,copper,cadmium,iron,manganese,and aluminum) in sediment in three ephemeral streams(Nahal Sansana,Nahal Revivim and Nahal Pura) with reservoirs in the Negev Desert is studied herein.The study was done in September 2016.The samples were collected from the surface layer of sediment(up to 10 cm) in the reservoirs and in the channels upstream and downstream of the reservoirs.Silt,which on average,accounted for 72% dominated in the sediment.In the spatial distribution of the particle size,sand and gravel fractions were deposited in the reservoirs.Aluminum,iron,and magnesium accounted for 99% of all analyzed metals.The Principal Component Analysis(PCA) and Hierarchical Cluster Analysis(HCA) showed that sediment in the Negev Desert channel upstream of the reservoirs had similar concentrations of metals.Similarities were also found between the analyzed reservoirs.The bottom sediment in reservoirs had higher concentrations of metals than sediment upstream and downstream of the reservoirs.The comparison of concentrations in upstream and downstream locations did not show any unambiguous trends because metal concentrations downstream from the reservoirs were not always lower than upstream of the reservoirs.The analysis of the sediment enrichment factor(EF) showed the highest value in the reservoirs and the lowest downstream of the reservoirs.The concentrations of most analyzed metals did not indicate the possibility of potential ecological risk(SQG).  相似文献   

14.
Pitambar  Gautam  Ulrich  Blaha  Erwin  Appel 《Island Arc》2005,14(4):424-435
Abstract Soil profiles of the Kathmandu urban area exhibit significant variations in magnetic susceptibility (χ) and saturation isothermal remanence (SIRM), which can be used to discriminate environmental pollution. Magnetic susceptibility can be used to delineate soil intervals by depth into normal (< 10?7 m3/kg), moderately enhanced (10?7–< 10?6 m3/kg) and highly enhanced (≥ 10?6 m3/kg). Soils far from roads and industrial sites commonly fall into the ‘normal’ category. Close to a road corridor, soils at depths of several centimeters have the highest χ, which remains high within the upper 20 cm interval, and decreases with depth through ‘moderately magnetic’ to ‘normal’ at approximately 30–40 cm. Soils in the upper parts of profiles in urban recreational parks have moderate χ. Soil SIRM has three components of distinct median acquisition fields (B1/2): soft (30–50 mT, magnetite‐like phase), intermediate (120–180 mT, probably maghemite or soft coercivity hematite) and hard (550–600 mT, hematite). Close to the daylight surface, SIRM is dominated by a soft component, implying that urban pollution results in enrichment by a magnetite‐like phase. Atomic absorption spectrometry of soils from several profiles for heavy metals reveals remarkable variability (ratio of maximum to minimum contents) of Cu (16.3), Zn (14.8) and Pb (9.3). At Rani Pokhari, several metals are well correlated with χ, as shown by a linear relationship between the logarithmic values. At Ratna Park, however, both χ and SIRM show significant positive correlation with Zn, Pb and Cu, but poor and even negative correlation with Fe (Mn), Cr, Ni and Co. Such differences result from a variety of geogenic, pedogenic, biogenic and man‐made factors, which vary in time and space. Nevertheless, for soil profiles affected by pollution (basically traffic‐related), χ exhibits a significant linear relationship with a pollution index based on the contents of some urban elements (Cu, Pb, Zn), and therefore it serves as an effective parameter for quantifying the urban pollution.  相似文献   

15.
This study determines the pollution, fractionation, and ecological risks of sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Contamination Factor(CF), pollution load index(PLI), and geoaccumulation index(Igeo) were used to assess the extent of the heavy metal pollution, while the potential ecological risk was evaluated using the risks assessment code(RAC) and Hkanson potential ecological risk. The analysis revealed concentrations(mg/g, dw) of the cadmium(Cd),chromium(Cr), copper(Cu), nickel(Ni), and lead(Pb) in sediments for wet and dry seasons vary from 4.40-5.08, 14.80-21.09. 35.03-44.8, 2.14-2.28, and 172.24-196.39, respectively. The results also showed that the metal fractionation percentages in the residual, oxidizable, and reducible fractions are the most significant, while the exchangeable and carbonate bound trace metals are relatively low. The RAC values indicate no risk for Cd and Ni and low risk for other metals at all the studied sites during both seasons.Potential ecological risk analysis of the heavy metal concentrations indicates that Cd had high individual potential ecological risk, while the other metals have low risk at all investigated sites. The multi-elemental potential ecological risk indices(R_1) indicate high ecological risk in all the ecosystems.  相似文献   

16.
An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood‐dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re‐suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations.  相似文献   

17.
Sediments of eight groyne fields along the middle course of the River Elbe (river km 287?390) were geochemically studied. The 78 sediment samples were analysed for pH and grain size distribution. The grain size fraction < 2 μm was used for mineralogical and chemical analysis: semiquantitative clay mineral analysis; total element content (Al, Ca, Fe, K, Mn, Cd, Cr, Cu, Ni, Pb, Zn), total inorganic and organic C, and bonding form fractionation with a six‐step sequential chemical extraction. The latter was performed on selected samples (n = 32). The sediments along the Elbe's course are still contaminated with heavy metals far above the local geogenic background level. An enrichment factor of more than 15 was calculated for zinc. Cr and Ni are the elements with the lowest enrichment. The bonding form analysis of selected heavy metals shows a dominance of relatively immobile bonding forms, e. g. the moderately reducible and the residual fraction, which implies a relative low mobility potential. Only Zn poses a higher potential threat to the environment, since it has a higher percentage of the first three extracted phases: adsorbed, carbonate, and easily reducible fraction.  相似文献   

18.
Admiralty Bay (Antarctica) hosts three scientific stations (Ferraz, Arctowski and Macchu Picchu), which require the use of fossil fuel as an energy source. Fossil fuels are also considered the main source of pollution in the area, representing important inputs of major pollutants (organic compounds) and trace metals and metalloids of environmental interest. Accordingly, this work presents the results of As, Cd, Cr, Cu, Ni, Pb and Zn in sediment profiles from Admiralty Bay. The sediment results from Ferraz station were slightly higher than the other sampling sites. The highest contents were observed for Cu and Zn (from 44 to 89 mg kg−1). Otherwise, by using enrichment factors and geochronology analysis, the most relevant enrichment was observed for As in the samples collected close to the Ferraz station, indicating that increasing As content may be associated with the activities associated with this site.  相似文献   

19.
李传琼  王鹏  陈波  李燕 《湖泊科学》2018,30(1):139-149
于2015年1月和7月在赣江干流和主要支流37个采样点共采集74个水样,分析赣江水系15种溶解态金属元素(Be、Al、V、Mn、Fe、Co、Ni、Cu、As、Mo、Cd、Sb、Tl、Pb、U)的空间分布特征和污染来源的贡献率.结果表明:多数水样的溶解态金属元素浓度符合水质标准,主要的超标元素是Fe,样品超标率为21.60%,其次为As(8.10%)、Mn(4.05%)、Tl(4.05%)和Al(1.35%).Be、Al、V、Fe、Co、Ni、Cu、U浓度在枯水期显著高于丰水期,其他元素差异不显著.依据溶解态金属元素的空间分布特征,赣江流域可分为3个区域:湘水、章水和赣江赣州市段(C1),桃江、袁水和锦江(C2),其他区域(C3);溶解态金属元素水平大小排序为C1C2C3,其中Be、Al、Cu、Mo、Sb、As浓度在C1最高,V、Mn、Fe、Ni、Cd浓度在C2最高.采矿废水、矿渣和农田土壤降雨淋滤、钢铁冶炼废水是赣江溶解金属元素的主要来源;Be、Al、Cu、Pb、U的污染源超过40%来自采矿废水,Cu、As、Mo、Cd的污染源超过35%来自矿渣和农田土壤降雨淋滤,V、Mn、Co、Ni的污染源超过41%来自钢铁冶炼废水.  相似文献   

20.
The removal of heavy metals such as Ni(II), Zn(II), Al(III), and Sb(III) from aqueous metal solutions was investigated using novel, cost effective, seaweed derived sorbents. Studies with a laboratory scale fixed‐bed sorption column, using a seaweed waste material (referred to as waste Ascophyllum product (WAP)) from the processing of Ascophyllum nodosum as biosorbent, demonstrated high removal efficiencies (RE) for a variety of heavy metals including Ni(II), Zn(II) and Al(III), with 90, 90 and 74% RE achieved from initial 10 mg/L metal solutions, respectively. The presence of Sb(III) in multi component metal solutions suppressed the removal of Ni(II), Zn(II) and Al(III), reducing the RE to 28, 17 and 24%, respectively. The use of Polysiphonia lanosa as a biosorbent showed a 67% RE for Sb(III), both alone and in combination with other metals. Potentiometric and conductometric titrations, X‐ray photoelectron and mid‐infrared spectroscopic analysis demonstrated that carboxyl, alcohol, sulfonate and ether groups were heavily involved in Sb(III) binding by P. lanosa. Only carboxyl and sulfonate groups were involved in Sb(III) binding by WAP. Furthermore, a greater amount of weak acidic groups (mainly carboxylic functions) were involved in Sb(III) binding by P. lanosa, compared to WAP which involved a greater concentration of strong acidic groups (mainly sulfonates).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号