首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatoms were identified and enumerated from a surface sediment calibration set of 50 lakes in northwestern Québec. The relationship between species composition and environmental variables was examined using canonical correspondence analysis (CCA). Forward selection and Monte Carlo permutation tests in CCA indicated that diatom species distributions in the data set are most strongly correlated to lakewater pH. A strong (r 2 boot = 0.83) weighted averaging calibration model, that includes bootstrapped error estimates, was developed for inferring past lakewater pH. Using this model, temporal changes in pH were reconstructed for two kettle lakes, Lac de la Pépinière and Lac Perron. Based on limnological data, both the study lakes were expected to have recently acidified due to increased acidic precipitation and increases in anthropogenic metal loading. However, our long-term pH inference data indicate that these lakes were naturally acidic during pre-industrial times. Nonetheless, the rate of acidification, particularly in Lac de la Pépinière, has accelerated in the last ∼75 years. These long-term pH records developed for the dilute lakes in northwestern Québec suggest that the region has received increased atmospheric pollutants from the nearby Horne smelter in Rouyn-Noranda. The pH inference profiles are markedly different from many other paleolimnological studies in acid-sensitive regions of Canada that have become acidic primarily as a result of industrial activities. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

2.
Assemblages of subfossil Chaoboridae mandibles from 80 thermally-stratified shield lakes in southern central Canada were examined to explore the influence of subfossil Chaoborus on subfossil Chironomidae-based paleolimnological inference models of deepwater oxygen, as volume-weighted hypolimnetic oxygen (VWHO). Inclusion of subfossil Chaoborus in subfossil Chironomidae-based VWHO models only improved model performance modestly, however it produced substantively better inferences of hypolimnetic oxygen in anoxic lakes, because Chaoborus had a much stronger positive relationship with low VWHO compared to chironomid taxa indicative of anoxic conditions, such as Chironomus. A Chaoborus mandible:Chironomidae head capsule ratio (chaob:chir) may be a useful index in paleolimnological studies, as chaob:chir in a surface sediment training set was significantly related to VWHO, and displayed little co-variation with other limnological variables such as trophic status (e.g. TP, TN) or lake depth (e.g. Z max). Chaob:chir values in a stratigraphic analysis tracked chironomid-inferred VWHO, however the use of chaob:chir in regional ‘top–bottom’ paleolimnological studies must be used with caution.  相似文献   

3.
A decade of widespread increases in surface water concentrations of total organic carbon (TOC) in some regions has raised questions about longer term patterns in this important constituent of water chemistry. This study uses near-infrared spectroscopy (NIRS) to infer lake water TOC far beyond the decade or two of observational data generally available. An expanded calibration dataset of 140 lakes across Sweden covering a TOC gradient from 0.7 to 24.7 mg L−1 was used to establish a relationship between the NIRS signal from surface sediments (0–0.5 cm) and the TOC concentration of the water mass. Internal cross-validation of the model resulted in an R 2 of 0.72 with a root mean squared error of calibration (RMSECV) of 2.6 mg L−1. The TOC concentrations reconstructed from surface sediments in four Swedish lakes were typically within the range of concentrations observed in the monitoring data during the period represented by each sediment layer. TOC reconstructions from the full sediment cores of four lakes indicated that TOC concentrations were approximately twice as high a century ago.  相似文献   

4.
Subarctic and arctic lakes are the focus of many paleolimnological studies, as they are still among the least impacted lakes by humans. Hence they provide an excellent setting for studies on long-term climatic variability without the overriding effects of direct anthropogenic perturbation. On the other hand, these ecosystems are highly vulnerable to even moderate anthropogenic influence like long-distance airborne transport of nutrients and pollutants. The paleolimnological studies conducted in these areas usually include a multitude of different proxies, but so far only few have used the green algal group of Pediastrum Meyen. These algae, however, preserve well in sediments and can be identified to species level, which lends them potential as a paleo-proxy. In this study we analysed the present Pediastrum assemblages from surface-sediments of 16 subarctic lakes in Finnish Lapland as well as bottom samples from the same sediment cores, which are “spot” samples from the recent past. We found a total of 14 Pediastrum taxa, five of which occurred at moderate to high relative abundances. The majority of the taxa showed distinct relationships to environmental variables measured. Of these, pH and dissolved organic carbon (DOC) explained most of the variance in the distribution of Pediastrum and generally summarised the main environmental gradients in our data set well. Five of the studied lakes lacked Pediastrum taxa altogether, and Pediastrum occurred at low abundances in four additional lakes. All of these nine lakes have extremely low nutrient concentrations and generally lowest pH and DOC in the data set and were defined by barren catchment areas and scarce lake macrophyte growth. According to a top–bottom analysis of sediment cores, the Pediastrum assemblages of the study lakes have changed moderately, suggesting changed environmental conditions in the lakes. Although these changes appear to be climate-related, more studies are needed to confirm this hypothesis.  相似文献   

5.
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.  相似文献   

6.
Chrysophyte cysts and scales and sponge spicules were enumerated, along with diatoms, from the surface sediments of 102 western Canadian lakes. The salinities of these lakes ranged from 0.042 to 369 g L−1 in late summer. Sponge spicules and chrysophyte cysts and scales were more common in fresher waters, although chrysophyte cysts were also present in subsaline and hyposaline waters at lower relative percentages. These siliceous microfossils can easily be distinguished and counted along with diatom valves, with little extra effort. It is likely that using these additional indicators will strengthen paleolimnological inferences of past lakewater salinity.  相似文献   

7.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

8.
A fossil diatom record covering the past 3000 cal. years BP wasanalyzed from a small lake in northwestern Québec near the northernlimit of present-day tree-line. Fragilaria virescens var.exigua Grunow in Van Heurck was the dominant speciesthroughout the core with abundances ranging between 13–35% of thetotal valve count. There was a replacement of alkaliphilous taxa byacidophilous taxa beginning ca. 1300 cal. yr ago, probably reflectinglong-term, natural acidification processes. A diatom-based transfer functionwas used to provide quantitative estimates of variations in lakewater dissolvedorganic carbon (DOC). These inferred values showed that DOC concentrations haveremained stable over the past 3000 years (mean ± S.D. = 5 ± 0.43 mg C l–1), suggesting relatively constant allochthonouscarbon inputs and underwater light conditions during the late Holocene. Thereconstructed DOC data were compared to the palynological record from the samelake. Our study indicates that, in contrast to paleolimnological records fromlakes in central and western Canada, climatic variations and associatedvegetational shifts have been too subtle to cause pronounced variations in DOCin this northern Québec site.  相似文献   

9.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

10.
Arctic aquatic systems are considered to be especially sensitive to anthropogenic disturbance, which can have cascading effects on biological communities as aquatic food-web structure is altered. Bio-indicators that respond to major limnological changes can be used to detect and infer major environmental change, such as climate warming, with the use of paleolimnological techniques. A multi-proxy approach was used to quantify recent environmental changes at Baker Lake, Nunavut, Arctic Canada. Analyses of fossilized remains of chironomids and diatoms were conducted on a sediment core of 20 cm in length sampled at 0.5-cm intervals. A new surface sediment training set of subfossil chironomid assemblages from 65 lakes across the eastern Canadian Arctic generated a robust (r jack2 = 0.79) surface water paleotemperature transfer function. The transfer function was applied to stratigraphic intervals from the Baker Lake sediment core to generate a paleotemperature reconstruction of sub-decadal resolution. The surface water temperature reconstruction inferred a 2°C increase in mid-summer surface water temperature for Baker Lake over the last 60 years, which was corroborated by the local instrumental record spanning the period of 1950–2007 AD. The chironomid record shows a recent decline of several cold-water taxa and appearance of warm-water indicators. This shift in community structure began circa 1906 AD, and intensified after 1940 AD. The corresponding fossil diatom record showed an increase in small planktonic Cyclotella taxa over the past 60 years, intensifying in the last 5 years, which also suggests a warmer climate and longer ice-free periods. The shifts in the diatom assemblages began later than the shifts in the chironomid assemblages, and were of lower magnitude, reflecting differences in the mechanisms in which these two indicators respond to environmental change.  相似文献   

11.
The apparent isotope enrichment factor εmacrophyte of submerged plants (εmacrophyte–DIC = δ13Cmacrophyte − δ13CDIC) is indicative of dissolved inorganic carbon (DIC) supply in neutral to alkaline waters and is related to variations in aquatic productivity (Papadimitriou et al. in Limnol Oceanogr 50:1084–1095, 2005). This paper aims to evaluate the usage of εmacrophyte inferred from isotopic analyses of submerged plant fossils in addition to analyses of lake carbonate as a palaeolimnological proxy for former HCO3 concentrations. Stable carbon isotopic analysis of modern Potamogeton pectinatus leaves and its host water DIC from the Tibetan Plateau and Central Yakutia (Russia) yielded values between −23.3 and +0.4‰ and between +14.0 and +6.5‰, respectively. Values of ε Potamogeton–DIC (range −15.4 to +1.1‰) from these lakes are significantly correlated with host water HCO3 concentration (range 78–2,200 mg/l) (r = −0.86; P < 0.001), thus allowing for the development of a transfer function. Palaeo-ε Potamogeton–ostracods values from Luanhaizi Lake on the NE Tibetan Plateau, as inferred from the stable carbon isotope measurement of fossil Potamogeton pectinatus seeds (range −24 to +2.8‰) and ostracods (range −7.8 to +7.5%) range between −14.8 and 1.6‰. Phases of assumed disequilibrium between δ13CDIC and δ13Costracods known to occur in charophyte swards (as indicated by the deposition of charophyte fossils) were excluded from the analysis of palaeo-ε. The application of the ε Potamogeton–DIC-HCO3 transfer function yielded a median palaeo-HCO3 -concentration of 290 mg/l. Variations in the dissolved organic carbon supply compare well with aquatic plant productivity changes and lake level variability as inferred from a multiproxy study of the same record including analyses of plant macrofossils, ostracods, carbonate and organic content.  相似文献   

12.
The surface sediment diatom and chrysophyte assemblages from 33 Sudbury lakes were added to our published 72 lake data set to expand and refine the diatom and chrysophyte-based inference models that we had earlier developed for this region. Our calibration data set now includes 105 lakes, representing gradients for multiple environmental variables (e.g., lakewater pH, metals, and transparency). The revised models are based on the weighted averaging calibration and regression approach and include bootstrap error estimates. The pH model was the strongest (r2 boot = 0.75, RMSE boot = 0.50). The chrysophyte-inferred pH model (r2 boot = 0.79, RMSE boot = 0.48) that we developed was as robust as the diatom pH model. Diatom and chrysophyte inferred pH models were then applied to top (surface sediments representing current conditions) and bottom (generally from > 30 cm deep representing pre-industrial conditions) sediment diatom and chrysophyte assemblages of 19 Killarney area lakes near Sudbury. The top and bottom inferred pH results were compared to early-1970s measured pH data. These data suggest that, although many of the poorly buffered Killarney lakes had experienced acidification, marked pH recovery has occurred in many lakes within the last 25 years. Despite the stunning pH recovery, the present-day diatom and chrysophyte assemblages are significantly different from assemblages present during pre-industrial times. Our results suggest that biological recovery may require more time than chemical recovery. It is also likely that these lakes may never recover biologically because other anthropogenic stressors (e.g., climate warming and increased exposure to UV-B radiation) may now have greater influence on biological communities in Killarney/Sudbury area lakes than acidification.  相似文献   

13.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   

14.
15.
We propose a palaeolimnological method for inferring past total phosphorus (TP) concentrations in lake water from spectrophotometrically-measured sedimentary pigments, particularly total carotenoids (TC). Our approach is based on a highly significant statistical correlation (P < 0.0001) between pigment concentrations (total carotenoids) in the surface sediment of 28 Italian lakes (subalpine, large, deep, shallow, volcanic) and TP concentrations measured in these lakes at overturn when the core was collected. A transfer function was developed from this “training” set, and used to estimate past TP concentrations from pigment concentrations in sediment cores. The results generally agreed with TP values as measured by long-term water quality monitoring programs. Contrasting results were obtained by a comparison with diatom-inferred TP. While the diatom model showed a tendency to overestimate TP values higher than 100 μg l−1, the pigment model correctly estimated TP in lakes when TP was <100 μg l−1, but not when lakes were rich in macrophytes. In fact, lakes with extensive populations of aquatic submersed macrophytes and epiphytes are outliers in terms of the TC versus TP relationship. The root mean square error of prediction of the pigment model is lower than those derived from certain diatom—based inference models. The predicted and residual values are not related to the estimated values and their average is not statistically different from zero. Errors were estimated via a ‘leave-one-out’ re-sampling technique. The proposed method permits rapid and relatively inexpensive determination of reference trophic conditions.  相似文献   

16.
17.
Inferred temperatures from chironomids preserved in the varved sediment of Lake Silvaplana in the Eastern Swiss Alps were compared with instrumental data obtained from a meteorological station in Sils-Maria, on the shore of Lake Silvaplana, for the time interval 1850–2001. At near-annual resolution, the general patterns of chironomid-inferred temperature changes followed the meteorological record over the last ∼150 years (r Pearson = 0.65, P = 0.01) and 87% of the inferences had deviations from the instrumental data below the root-mean-square error of prediction (RMSEP). When the inferences were compared with a 2-year running mean in the meteorological data, 94% of the inferences had differences with the instrumental data below the RMSEP, indicating that more than half of the inaccurate inferences may have been due to errors in varve counting. Larger deviations from the instrumental data were also obtained from samples with low percentages of fossil taxa represented in the training set used for temperature reconstruction and/or assemblages with poor fit to temperature. Changes in total phosphorus (TP, as inferred by diatoms) and/or greater precipitation were possible factors affecting the accuracy of the temperature reconstruction. Although these factors might affect the quantitative estimates, obtaining >80% accurate temperature inferences suggests that chironomid analysis is a reliable tool for reconstructing mean July air temperature quantitatively over the last ∼150 years in Lake Silvaplana.  相似文献   

18.
Sediment records from floodplain lakes have a large and commonly untapped potential for inferring wetland response to global change. The Brazilian Pantanal is a vast, seasonally inundated savanna floodplain system controlled by the flood pulse of the Upper Paraguay River. Little is known, however, about how floodplain lakes within the Pantanal act as sedimentary basins, or what influence hydroclimatic variables exert on limnogeological processes. This knowledge gap was addressed through an actualistic analysis of three large, shallow (<5 m) floodplain lakes in the western Pantanal: Lagoa Gaíva, Lagoa Mandioré and Baia Vermelha. The lakes are dilute (CO3 2− > Si4+ > Ca2+), mildly alkaline, freshwater systems, the chemistries and morphometrics of which evolve with seasonal flooding. Lake sills are bathymetric shoals marked by siliciclastic fans and marsh vegetation. Flows at the sills likely undergo seasonal reversals with the changing stage of the Upper Paraguay River. Deposition in deeper waters, typically encountered in proximity to margin-coincident topography, is dominated by reduced silty-clays with abundant siliceous microfossils and organic matter. Stable isotopes of carbon and nitrogen, plus hydrogen index measured on bulk organic matter, suggest that contributions from algae (including cyanobacteria) and other C3-vegetation dominate in these environments. The presence of lotic sponge spicules, together with patterns of terrigenous sand deposition and geochemical indicators of productivity, points to the importance of the flood pulse for sediment and nutrient delivery to the lakes. Flood-pulse plumes, waves and bioturbation likewise affect the continuity of sedimentation. Short-lived radioisotopes indicate rates of 0.11–0.24 cm year−1 at sites of uninterrupted deposition. A conceptual facies model, developed from insights gained from modern seasonal processes, can be used to predict limnogeological change when the lakes become isolated on the floodplain or during intervals associated with a strengthened flood pulse. Amplification of the seasonal cycle over longer time scales suggests carbonate, sandy lowstand fan and terrestrial organic matter deposition during arid periods, whereas deposition of lotic sponges, mixed aquatic organic matter, and highstand deltas characterizes wet intervals. The results hold substantial value for interpreting paleolimnological records from floodplain lakes linked to large tropical rivers with annual flooding cycles.  相似文献   

19.
Detrended canonical coreespondence analysis (DCCA) was used to examine the relationships between diatom species distributions and environmental variables from 62 drainage lakes in the Adirondack region, New York (USA). The contribution of lakewater pH, Alm (monomeric Al), NH4, maximum depth, Mg, and DOC (dissolved organic carbon) were statistically significant in explaining the patterns of variation in the diatom species composition. Twenty-three and sixteen diatom taxa were identified as potential indicator species for pH and Alm, respectively (i.e. a taxon with a strong statistical relationship to the environmental variable of interest, a well defined optimum, and a narrow tolerance to the variable of interest). Using weighted-averaging regression and calibration, predictive models were developed to infer lakewater pH (r 2=0.91), Alm (r 2=0.83), DOC (dissolved organic carbon) (r 2=0.64), and ANC (acid neutralizing capacity; r 2=0.90). These variables are of key importance in understanding watershed acidification processes. These predictive models have been used in the PIRLA-II (Paleoecological Investigation of Recent Lake Acidification-II) project to answer policy-related questions concerning acidification, recovery, and fisheries loss.  相似文献   

20.
Stable isotopic compositions and concentrations of total sedimentary sulphur (S) were determined in cores from 6 lakes in the acid-sensitive Muskoka-Haliburton region of south-central Ontario. The isotopic composition of S in deep sediment (> ~ 20 cm) was approximately constant in all lakes, and indicated a pre-industrial δ 34S value between +4.0 and +5.3‰, which is similar to current bulk deposition. Similarly, total S concentrations in deep sediment were relatively low (1.9–5 mg S g−1 dwt) and approximately constant with depth within cores. All lakes exhibited up-core increases in total S and decreases in δ 34S at a depth corresponding to the beginning of industrialization in the Great Lakes region ( ~ 1900), resulting in a generally reciprocal depth pattern between total S concentration and δ 34S ratios. While initial shifts in total S and δ 34S were likely due to enhanced SO4 reduction of newly available anthropogenic SO4, both the magnitude and pattern of up-core S enrichment and shifts in δ 34S varied greatly among lakes, and did not match changes in S deposition post 1900. Differences between lakes in total S and δ 34S were not related to any single hydrologic (e.g., residence time) or physical (e.g., catchment-area-to-lake area ratio) lake characteristic. This work indicates that sediment cores do not provide consistent records of changes in post-industrial S deposition in this region, likely due to redox-related mobility of S in upper sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号