首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
声波测井中首波与次首波的理论研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文讨论了裸眼井中由点状声源激发的首波与次首波问题,认为:首波与次首波分别是以地层纵波速度Vc和地层横波速度Vs传播的几何衰减波。同时给出了泄漏波的解析式,而泄漏纵波和泄漏横波的截止频率分别为远场处的首波与次首波的传播特征频率。  相似文献   

2.
非对称声源多极子随钻声波测井实验室测量研究   总被引:3,自引:3,他引:0       下载免费PDF全文
现有的随钻声波测井通常采用三种测量方式:单极子、偶极子及四极子测量模式.分别采用单极子源、偶极子源和四极子源激发单极子、偶极子和四极子信号对地层速度信息进行测量.由于随钻测井环境比较复杂,钻杆在井孔中占据大部分空间,钻杆速度高于地层速度,导致接收到的信号中仪器波能量占主导,无法有效地提取地层的纵横波速度信息.本文探讨一种采用非对称偏心的点声源,一次激发,利用方位分布的四个接收器接收,经过合成后同时分别得到单极子、偶极子和四极子模式波信号的测量方法,为建立同时利用多极模式波信号测量地层纵横波速度的随钻声波测井实用技术提供基础.本文利用1:12的缩比模型在实验室对该方法进行了考察,实验结果证明,可以通过非对称点声源得到有效的地层单极子、偶极子和四极子模式波信号.通过分析和对比实测数据和理论模拟的频散曲线,本文进一步提出利用三种模式波的频散曲线联合反演确定地层横波速度的方法.  相似文献   

3.
多极子声波测井在低孔低渗气层中的数值研究   总被引:2,自引:1,他引:2       下载免费PDF全文
现有的天然气勘探中的测井技术,在评价低孔低渗气层时遇到诸多难题,本文引入了一种新的气藏评价方法,即利用多极源激发的模式波的幅度来识别气藏,并对此方法进行了数值验证.以Biot多孔介质理论为基础建立了低孔低渗含气储层计算模型,数值计算了多极子声源在充液井孔中激发的频散曲线、衰减曲线以及全波列波形.结果表明,挠曲波和螺旋波的衰减系数与相速度相比,对孔隙中的流体性质更敏感,且随着多极源级数的增加和工作主频的提高,挠曲波和螺旋波的衰减系数的变化程度明显增强;在偶极子和四极子激发的全波列波形中,可清晰的观测到对地层孔隙流体不敏感的地层横波,在这种情况下,可以通过对比波列中地层横波和频散的弯曲波(或螺旋波)幅度来识别气层.  相似文献   

4.
本文应用三维柱坐标时域有限差分方法模拟了多极子随钻声波测井的波场,提出了在横向各向同性(TI)慢速地层倾斜井中,使用四极源激发、多模式采集进行各向异性参数反演的方法.模拟结果表明:在强各向异性地层大角度倾斜井中使用四极源能够激发出多极模式波,并且井孔内的声场会随着声源方向角β(声源方向和快横波偏振方向的夹角)的改变而发生变化.使用四极子采集方式记录时,可以发现波形会分裂成快慢两种波;并且在声源方向与地层快横波偏振方向成45°时,分裂的两种波形的速度更趋近于地层快慢横波波速,用此可反演地层各向异性值大小.使用单极子采集方式记录时,其波形能量与声源方向角β大致成cos22β的关系,在声源方向角为45°时,其波形幅度最小,用此可判断与快横波偏振方向成45°角的方向.使用AC方向(与声源同方向)偶极子采集方式记录时,当声源方向与快横波偏振方向一致时,采集到的波形幅度最小;而与快横波偏振方向垂直时,波形幅度最大,所以通过偶极子采集方式记录的波形可以判断快横波偏振方向.因此,在强各向异性倾斜井中进行随钻四极子测量时,可以使用多模式采集方式来进行地层各向异性的反演.  相似文献   

5.
针对软地层套管井中弯曲波频散移向高频,以致超出了现行偶极声波测井仪器的激发频带的问题,本文在井外为孔隙地层时,采用Biot模型对套管井多极源激发的声波场进行了理论推导,对套管井偶极弯曲波的频散特性进行了数值模拟,考察了高密度水泥(或快速水泥)和低密度水泥(或轻质水泥)情况下的弯曲波频散,分析了不同水泥环对弯曲波主频散区和激发谱偏移的影响,重点对轻质水泥套管井中偶极源激发的模式波频散与激发谱及临界折射P、S波激发特性进行了研究,并考察了渗透率、孔隙度对弯曲波频散及衰减的影响,利用实轴积分法计算了偶极声源激发的时域全波波形.分析对比结果表明,在快速水泥情况下弯曲波频散曲线随着地层特征横波速度的减小会迅速向高频移动,随着快速水泥向轻质水泥变化,弯曲波频散曲线向高频移动将会减缓,对于特征横波速度低于1400m·s~(-1)的软地层,偶极弯曲波基础模式主频散区(或截止频率)可以由原来13kHz向低频移动至4kHz;在轻质水泥套管井中,无论是硬地层还是软地层,在目前偶极声波测井仪器声源主频激发下,接收波形中弯曲波均占主导地位.  相似文献   

6.
裸眼井中弹性波传播的非对称模式的数值研究   总被引:6,自引:0,他引:6       下载免费PDF全文
本文从数值上研究了裸眼井中弹性波传播的非对称模式,给出了合成微地震图和导波(弯曲波)的频散曲线,发现在“硬”地层和“软”地层的井中,导波都是高度频散的,其最大相速度等于地层的横波速度,其截止频率低于对称模式的伪瑞利波的截止频率;在低频(2-3kHz)和长源距(3-4m)的条件下,由非对称的声源(如声偶极子)所产生的微地震图中,初至信号是以横波速度传播的,而以纵波速度传播的信号被抑制。本文的结果对研制横波速度测井仪是有意义的。  相似文献   

7.
常规陆上VSP(Vertical Seismic Profiling)勘探普遍采用纵波震源激发,三分量检波器接收,主要利用的是纵波和转换横波信息。已有的研究表明,炸药震源在井下激发、可控震源在地面垂向振动,均会产生较强的纯纵波和一定强度的纯横波;泊松比差别较大的分界面有利于形成较强的透射转换横波。本文通过对激发形成的纯横波和下行转换形成的横波进行对比分析,认为纯横波的主频往往低于纯纵波的主频,而下行转换横波的主频通常接近纵波的主频。本文分别对两个陆上纵波源零偏和非零偏VSP资料进行分析,结果表明这些资料中普遍存在纯横波,只是横波的强弱存在不同程度的变化。利用纵波源零偏VSP资料,可以获得横波速度信。最后对VSP纵波和横波联合应用前景进行了分析,应该充分利用纵波源VSP资料中的横波信息。  相似文献   

8.
横向各向同性介质是地层中普遍存在的一种各向异性介质.本文对径向分层TI孔隙介质包围井孔中激发的斯通利波和弯曲波的传播特性进行了理论计算,发现模式波在低频时更多的是反应原状地层的信息,而随着频率的增加侵入带参数逐渐起控制作用;Biot理论描述的地层衰减比速度更容易受井壁附近地层参数的影响.利用灵敏度曲线定量研究了不同频率下地层各个参数对相速度和衰减系数的贡献大小,主要结果显示模式波的衰减受水平渗透率影响明显,而垂直渗透率的变化对模式波几乎无影响;斯通利波对水平向传播的横波速度比弯曲波的灵敏度高.从单极子和偶极子声源在井孔中激发的全波波形也可发现,声波测井仪器较宽的声源频带和合适的源距设置有利于对不同径向深度上的地层声学参数进行成像.  相似文献   

9.
横向各向同性地层中随钻声波测井模式波分析   总被引:8,自引:6,他引:2       下载免费PDF全文
针对横向各向同性地层随钻声波测井模型,通过模式分析的方法,考察了快速地层和慢速地层井孔内随钻单极子、偶极子和四极子声源激发的斯通利波、弯曲波和螺旋波的相速度频散和激发强度特征,计算了这些模式波对于地层弹性常数的灵敏度,并与电缆测井中的情况进行了比较.结果表明:随钻斯通利波在低频时对地层弹性常数中c66的灵敏度较电缆测井中有了很大提高,可用于反演地层水平向横波速度;随钻偶极子最低阶弯曲波在低频时不能用于直接获取地层横波信息,但在慢速地层中频率较高(例如6 kHz)时却可以间接得到地层垂直向横波速度;随钻四极子螺旋波的特征与电缆测井中的类似,可用于获取地层垂直向横波速度.  相似文献   

10.
多极子随钻声波测井波场模拟与采集模式分析   总被引:16,自引:9,他引:7       下载免费PDF全文
王华  陶果  王兵  李卫  张绪健 《地球物理学报》2009,52(9):2402-2409
应用三维非均匀交错网格有限差分程序模拟了多极子随钻声波测井的波场,考察了硬地层中单极子随钻声波测井响应及软地层中声源频率对多极子随钻声波测井的影响;计算了接收阵列波形的时域相干谱及频散特征,结果表明随钻测井仪器居中时,在硬地层中可以直接利用单极子声系得到地层横波速度,但地层纵波受到钻铤波的极大干扰.而在软地层中可以利用单极子声系直接测得地层纵波速度,但地层横波速度则需要使用工作在较低频率下的四极子随钻声波仪来测得,此时测井频段又会落入钻井噪声频带而受到影响.为此本文提出数值模拟手段结合物理实验的方法得到钻铤波的影响,在实际测井中通过信号处理方法而不是用在仪器本体上刻槽的方式来更完全地消除钻铤的影响.为了避免钻井噪声的影响,本文提出六极子随钻声波仪更适合软地层的横波测量.本文用数值实验结果来说明这些方法的可行性.  相似文献   

11.
声波测井中的纵波和横波   总被引:2,自引:0,他引:2  
充流体井中声传播理论是声波测井的理论基础。Blot(1952)绘出了充流体井中简正模式和斯通利波的频散曲线,White等(1968)首先计算了合成全波列波形,Peterson(1974)和余寿绵(1984)导出了简正模式和斯通利波的振幅表达式。余寿绵还预言纵波和横波是一种共振现象,为沿轴向传播存在特征频率的不衰减波。但是,现行理论认为纵  相似文献   

12.
多极源随钻声波测井实验分析   总被引:2,自引:2,他引:0       下载免费PDF全文
本文针对随钻声波测井中钻铤波干扰地层声波测量的问题,设计了小尺寸随钻声波测井探头,在实验室内开展了多极源(单极源、偶极源和四极源)随钻声波测井实验研究.先在水池中对裸露的探头进行了随钻测量,记录到了沿钻铤传播的直达钻铤波,并获得了不同声源激发的钻铤波速度.之后在砂岩和有机玻璃模型中进行了随钻声波测井实验,观测到多极源随钻测井的全波波形,并通过与水池中实验结果的对比,分析了井中钻铤波的传播特性.特别地,在偶极随钻测井实验中不仅记录到了偶极一阶钻铤波,还观测到对弯曲波干扰较大的偶极二阶钻铤波,进而研究了不同声源频率下该波群的响应特性及其对弯曲波测量的影响.此外,基于单极源和偶极源随钻声波测井实验数据,本文发现:随着声源频率的增加,单极和偶极钻铤波的传播特性不同,但它们在测井全波中的相对幅度均降低,进而可从测井全波中较好地提取地层的声波速度.本文实验结果对随钻声波测井仪器设计及测井数据解释具有重要意义.  相似文献   

13.
多极子阵列声波测井仪器采集的单极和偶极数据受到地层、井孔、仪器测量系统的影响.在处理实际声波测井数据时,必须考虑多极子模式波的频散效应,以及测井仪器在其中的影响.根据仪器等效理论和相位匹配方法,本文提出了一种从多极子阵列声波测井数据中同时获得纵、横波慢度的联合反演方法.这种方法的关键在于利用相同仪器-地层模型计算多极子模式波频散曲线,以此来匹配频域内纵波与横波数据的相位.相对于将泄漏纵波和弯曲波频散效应分开处理的其他方法,该方法不仅可以减少纵横波速度反演的不确定性,而且还避免了从声波数据中提取频散数据的繁琐过程.通过理论分析和现场数据处理证明了本文联合反演方法的准确性和有效性.  相似文献   

14.
在油、气储层的勘探和开发中观察到的一个现象是储层岩石中普遍存在孔隙和裂隙.随着近年来孔、裂隙介质弹性波动理论的进展,我们可以将此理论应用于测井技术,以此来指导从声波测井中测量孔、裂隙地层的声学参数.本文计算了孔、裂隙地层里充流体井眼中的多极子声场,分析了声场随裂隙介质的两个主要参数(即裂隙密度和裂隙纵横比)的变化特征.井孔声场的数值计算表明裂隙密度可以大幅度地降低井中声波纵、横波的波速和振幅.随着裂隙密度的增加,在测井频段内也可以看到纵、横波速的频散现象(这种频散在孔隙地层中一般是观察不到的).本文还研究了多极子模式波 (即单极的Stoneley波、伪瑞利波以及偶极的弯曲波)随裂隙参数的变化特征.结果表明,这些模式波的振幅激发和速度频散都受裂隙密度的影响.裂隙密度越高影响越大.此外,裂隙还对模式波的传播造成较大的衰减.相对裂隙密度而言,裂隙纵横比是一个频率控制参数,它控制裂隙对声场影响的频率区间.本文的分析结果对裂缝、孔隙型地层的声波测井具有指导意义.  相似文献   

15.
利用井中低频偶极横波进行声波远探测的新方法   总被引:2,自引:1,他引:1       下载免费PDF全文
为了突破目前声波远探测技术存在的局限性,提出了一种新的偶极横波远探测方法,即利用井中偶极子产生的井中弯曲波存在低频截止频率的现象,在声源截止频率以下激发偶极声波.通过对比分析井中偶极声源分别在截止频率上、下激发时,井孔内外产生的辐射声场,明确了截止频率以下井中偶极声源的远场辐射特征和低频截止频率激发偶极横波的优势,结合数值模拟,进一步对其反射声场进行了分析.结果表明,该方法可以避免艾里相的巨大振幅对数据量化产生的"饱和"效应,相比传统的远探测测井方式更具优势,常规源距即可满足专门的远探测测井仪器需求.  相似文献   

16.
胡恒山  何晓 《地球物理学报》2009,52(7):1873-1880
在多极源声测井中, 低频弯曲波或螺旋波被广泛应用于测量地层的横波速度. 前人的研究已证明在各向同性地层中井孔伪瑞利波、弯曲波及螺旋波的低频极限速度都等于地层横波速度. 大量的数值计算结果似乎表明此结论在横向各向同性(TI)地层情况下也能成立, 但缺乏理论证明. 本文在井孔平行于TI弹性地层对称轴的模型下, 考察了井内声源激发的波在流-固边界上的反射和透射情况, 阐述了非泄漏模式导波产生的必要条件并讨论了其速度上限值. 我们发现在各向异性参数满足一定条件的TI地层中,导波速度的低频极限值小于沿井孔方向上的横波速度. 通过对井孔导波的频散分析以及对时域全波列的数值模拟, 论证了在这类地层中进行多极源声测井时,不可能根据弯曲波或螺旋波的到达时间准确获取地层的横波速度值.  相似文献   

17.
Seismic wave propagation in transversely isotropic (TI) media is commonly described by a set of coupled partial differential equations, derived from the acoustic approximation. These equations produce pure P‐wave responses in elliptically anisotropic media but generate undesired shear‐wave components for more general TI anisotropy. Furthermore, these equations suffer from instabilities when the anisotropy parameter ε is less than δ. One solution to both problems is to use pure acoustic anisotropic wave equations, which can produce pure P‐waves without any shear‐wave contaminations in both elliptical and anelliptical TI media. In this paper, we propose a new pure acoustic transversely isotropic wave equation, which can be conveniently solved using the pseudospectral method. Like most other pure acoustic anisotropic wave equations, our equation involves complicated pseudo‐differential operators in space which are difficult to handle using the finite difference method. The advantage of our equation is that all of its model parameters are separable from the spatial differential and pseudo‐differential operators; therefore, the pseudospectral method can be directly applied. We use phase velocity analysis to show that our equation, expressed in a summation form, can be properly truncated to achieve the desired accuracy according to anisotropy strength. This flexibility allows us to save computational time by choosing the right number of summation terms for a given model. We use numerical examples to demonstrate that this new pure acoustic wave equation can produce highly accurate results, completely free from shear‐wave artefacts. This equation can be straightforwardly generalized to tilted TI media.  相似文献   

18.
非常规油气藏(如致密性地层及蕴藏油气的页岩地层)的重要特征是低孔、低渗,但裂隙或裂缝比较发育.为满足非常规勘探的需求,本文将孔、裂隙介质弹性波传播理论应用于多极子声波测井的井孔声场模拟,重点研究了致密介质中裂隙发育时多极子声波的传播机理以及衰减特征.井孔声场的数值计算结果表明裂隙的存在明显改变了弹性波和井孔模式波的频散、衰减和激发强度,尤其是井壁临界折射纵波的激发谱的峰值随着频率的增加逐渐降低,这与应用经典的Biot理论下的计算结果相反,且裂隙的存在也使得饱含水和饱含气时临界折射纵波激发强度的差异变大.井孔模式波的衰减与地层横波衰减和井壁流体交换有关,井壁开孔边界下致密地层裂隙发育还使得井孔斯通利波和艾里相附近的弯曲波对孔隙流体的敏感性增强,在井壁闭孔边界条件下引起井孔模式波衰减的主要因素是裂隙引起的地层横波衰减造成的,且在截止频率附近弯曲波的衰减与地层的横波衰减一致.数值计算结果为解释非常规油气地层的声学响应特征提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号