首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exact higher dimensional solutions of Einstein-Maxwell field equations for spherically symmetric distribution of charged perfect fluid are obtained by using the method originally used by Hajj-Boutros and Sfeila (Gen. Relativ. Gravit. 18(4):395, 1986) for four-dimensional space-time. The new exact solutions have been generated from those of Khadekar et al. (J. Indian Math. Soc. 68(1–4):33, 2001), Humi and Mansour (Phys. Rev. D 29(6):1076, 1984) and Banerjee and Santos (J. Math. Phys. 22(4):824, 1981) in the frame work of higher dimensional space-time. The various physical properties are also discussed.  相似文献   

2.
We have obtained static and spherically symmetric self-gravitating solution of the field equations for anisotropic distribution of matter in higher- dimensional in the context of Einstein’s general theory of relativity. This work is an extension of the previous work of Hector Rago (Astrophys. Space Sci. 183:333, 1991) for four dimensional space-time. The solutions are matched to the analytical solutions for spherically symmetric self gravitating distribution of anisotropic matter obtained by Hector Rago (1991) for n=2.  相似文献   

3.
A locally rotationally symmetric(LRS) Bianchi type-II space-time is considered in the frame work of a modified theory of gravitation proposed by Canuto et al. (Phys. Rev. Lett. 39:429, 1977) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. A special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983) is used to obtain determinate solution of the field equations. We have also used the barotropic equation of state and the bulk viscous pressure is assumed to be proportional to the energy density. The physical and kinematical properties of the model are also discussed.  相似文献   

4.
A spatially homogeneous and anisotropic LRS Bianchi type-II space-time is considered in the frame work of second self-creation theory of gravitation proposed by Barber (Gen. Relativ. Gravit. 14:117, 1982) in the presence of bulk viscous fluid containing one dimensional cosmic strings. A determinate solution of the field equations is presented using special variation for Hubble’s parameter given by Berman (Nuovo Cimento B 74:182, 1983) and some physically plausible conditions. The solution represents a bulk viscous string model in the second self-creation cosmology. We have also discussed some physical and kinematical properties of the model.  相似文献   

5.
A five dimensional Kaluza-Klein dark energy model with variable EoS parameter is investigated in the scale co-variant theory of gravitation proposed by Canuto et al. (in Phys. Rev. 39:429, 1977) in a five dimensional Kaluza-Klein space-time in the presence of perfect fluid source. Using the special law of variation for Hubble’s parameter proposed by Berman (in Nuovo Cimento B 74:183, 1983), we have obtained a determinate solution which represents a dark energy cosmological model in the theory. We have also used the result that the scalar expansion is proportional to shear scalar of the space-time. It is observed that the EoS parameter, skewness parameter in the model turn out to be functions of cosmic time. Some physical and Kinematical properties of the model are also discussed.  相似文献   

6.
Subdwarf B stars (sdBs) can significantly change the ultraviolet spectra of populations at age t~1 Gyr, and have been even included in the evolutionary population synthesis (EPS) models by Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007). In this study we present the spectral energy distributions (SEDs) of binary stellar populations (BSPs) by combining the EPS models of Han et al. (Mon. Not. R. Astron. Soc. 380:1098, 2007) and those of the Yunnan group (Zhang et al. in Astron. Astrophys. 415:117, 2004; Mon. Not. R. Astron. Soc. 357:1088, 2005), which have included various binary interactions (except sdBs) in EPS models. This set of SEDs is available upon request from the authors. Using this set of SEDs of BSPs we build the spectra of Burst, E, S0–Sd and Irr types of galaxies by using the package of Bruzual and Charlot (Mon. Not. R. Astron. Soc. 344:1000, 2003). Combined with the photometric data (filters and magnitudes), we obtain the photometric redshifts and morphologies of 1502 galaxies by using the Hyperz code of Bolzonella et al. (Astron. Astrophys. 363:476, 2000). This sample of galaxies is obtained by removing those objects, mismatched with the SDSS/DR7 and GALEX/DR4, from the catalogue of Fukugita et al. (Astron. J. 134:579, 2007). By comparison the results with the SDSS spectroscopic redshifts and the morphological index of Fukugita et al. (Astron. J. 134:579, 2007), we find that the photo-z fluctuate with the SDSS spectroscopic redshifts, while the Sa–Sc galaxies in the catalogue of Fukugita et al. (Astron. J. 134:579, 2007) are classified earlier as Burst-E galaxies.  相似文献   

7.
A spatially homogeneous and anisotropic Bianchi type-III space-time is considered in the framework of a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961) in the presence of bulk viscous fluid containing one dimensional cosmic strings. We have found a determinate solution of the field equations using the plausible physical conditions (i) a barotropic equation state for the pressure and density, (ii) special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B74:182, 1983), (iii) shear scalar is proportional to scalar expansion and (iv) the trace of the energy tensor of the fluid vanishes. We have also assumed that bulk viscous pressure is proportional to energy density. Some physical and kinematical properties of the model are, also, discussed.  相似文献   

8.
The direct detection of Kuiper Belt Objects (KBOs) by telescopic imaging is not currently practical for objects much less than 100 km in diameter. However, indirect methods such as serendipitous stellar occultations might still be employed to detect these bodies. The method of serendipitous stellar occultations has been previously used with some success in detecting KBOs—Roques et al. (Astron J 132(2):819–822, 2006) detected three Trans-Neptunian objects; Schlichting et al. (Nature 462(7275):895–897, 2009) and Schlichting et al. (Astrophys J 761:150, 2012) each detected a single object in archival Hubble Space Telescope data. However, previous assessments of KBO occultation detection rates have been calculated only for telescopes—we extend this method to video camera systems, and we apply this derivation to the automated meteor camera systems currently in use at the University of Western Ontario. We find that in a typical scenario we can expect one occultation per month. However recent studies such as those of Shankman et al. (Astrophys. J. Lett. 764. doi:10.1088/2041-8205/764/1/L2, 2013) and Gladman et al. (AAS/Division for Planetary Sciences Meeting Abstracts, 2012) which indicate that the population of small KBOs may be smaller than has been assumed in the past may result in a sharp reduction of these rates. Nonetheless, a survey for KBO occultations using existing meteor camera systems may provide valuable information about the number density of KBOs.  相似文献   

9.
The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a?time?–?distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time?–?distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a?minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors that they produce.  相似文献   

10.
We present low resolution UV spectra of two polar systems, AM Her and QQ Vul from the observations taken by the IUE (International Ultraviolet Explorer) of the period between 1978–1996 and 1983–1996 for both systems respectively, to accomplish a large scale study of what happens to the ultraviolet flux of C IV 1550 Å spectral line during different orbital phases. Two spectra for both systems showing the variations in line fluxes and line widths at different orbital phases in high and intermediate states are presented. We concentrated on calculating the line fluxes and line widths of C IV 1550 Å emission line originating in the accretion stream. Our results show that there is spectral variability for the aformentioned physical parameters at different times, similar to that known for the light curve (Heise and Verbunt, Astron. Astrophys. 189:112, 1988; Gansicke et al., Astron. Astrophys. 303:127, 1995; Kafka and Honeycutt, Astron. J. 125:2188K, 2003). We attribute it to the variations of both density and temperature as a result of changing the mass transfer rate (Hutchings et al., Astron. J. 123:2841H, 2002; King and Lasota, Astron. Astrophys. 140L:16K, 1984) which is responsible for this spectral variability. Also we found that the line fluxes of AM Her are greater than the line fluxes of QQ Vul, while the line widths of both systems are approximately the same.  相似文献   

11.
In this paper, we investigate a spatially homogeneous and anisotropic Bianchi type-V cosmological model in a scalar-tensor theory of gravitation proposed by Harko et al. (Phys. Rev. D 84:024020, 2011) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. To obtain a determinate solution, a special law of variation proposed by Berman (Nuovo Cimento B 74:182, 1983) is used. We have also used the barotropic equation of state for the pressure and density and bulk viscous pressure is assumed to be proportional to energy density. It is interesting to note that the strings in this model do not survive. Also the model does not remain anisotropic throughout the evolution of the universe. Some physical and kinematical properties of the model are also discussed.  相似文献   

12.
We present a method for fast and accurate azimuth disambiguation of vector magnetogram data regardless of the location of the analyzed region on the solar disk. The direction of the transverse field is determined with the principle of minimum deviation of the field from the reference (potential) field. The new disambiguation (NDA) code is examined on the well-known models of Metcalf et al. (Solar Phys. 237, 267, 2006) and Leka et al. (Solar Phys. 260, 83, 2009), and on an artificial model based on the observed magnetic field of AR 10930 (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We compare Hinode/SOT-SP vector magnetograms of AR 10930 disambiguated with three codes: the NDA code, the nonpotential magnetic-field calculation (NPFC: Georgoulis, Astrophys. J. Lett. 629, L69, 2005), and the spherical minimum-energy method (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We then illustrate the performance of NDA on SDO/HMI full-disk magnetic-field observations. We show that our new algorithm is more than four times faster than the fastest algorithm that provides the disambiguation with a satisfactory accuracy (NPFC). At the same time, its accuracy is similar to that of the minimum-energy method (a very slow algorithm). In contrast to other codes, the NDA code maintains high accuracy when the region to be analyzed is very close to the limb.  相似文献   

13.
We study the capture and crossing probabilities in the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (Celest Mech Dyn Astron 56:563–599, 1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100 %, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow us to predict the capture probabilities in both the adiabatic and non-adiabatic cases, in good agreement with results of Gomes (Celest Mech Dyn Astron 61:97–113, 1995) and Quillen (Mon Not RAS 365:1367–1382, 2006). We apply our model to the case of the Vesta asteroid family in the same context as Roig et al. (Icarus 194:125–136, 2008), and found results indicating that the high capture probability of Vesta family members into the 3:1 mean motion resonance is basically governed by the eccentricity of Jupiter and its secular variations.  相似文献   

14.
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry, Proc Lond Math Soc ser 2, 27:151–170, 1926; Moser, Commun Pure Appl Math 9:673, 1956 and 11:257, 1958; Moser, Giorgilli, Discret Contin Dyn Syst 7:855, 2001). The unstable and stable manifolds intersect at an infinity of homoclinic points, generating a complicated homoclinic tangle. In the case of simple mappings it was found (Da Silva Ritter et al., Phys D 29:181, 1987) that the domain of convergence of the formal series extends to infinity along the invariant manifolds. This allows in practice the study of the homoclinic tangle using only series. However in the case of Hamiltonian systems, or mappings with a finite analyticity domain, the convergence of the series along the asymptotic manifolds is also finite. Here, we provide numerical indications that the convergence does not reach any homoclinic points. We discuss in detail the convergence problem in various cases and we find the degree of approximation of the analytical invariant manifolds to the real (numerical) manifolds as (i) the order of truncation of the series increases, and (ii) we use higher numerical precision in computing the coefficients of the series. Then we introduce a new method of series composition, by using action-angle variables, that allows the calculation of the asymptotic manifolds up to an a arbitrarily large extent. This is the first case of an analytic development that allows the computation of the invariant manifolds and their intersections in a Hamiltonian system for an extent long enough to allow the study of homoclinic chaos by analytical means.  相似文献   

15.
Algorithms are derived for constructing five dimensional Kaluza-Klein cosmological space-times in the presence of a perfect fluid source in the framework of f(R,T) gravity theory proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). Starting from the solution of Reddy et al. (Int. J. Theor. Phys 51:3222-3227, 2012b) some classes of new solutions are generated which correspond to accelerating models of the Universe. The physical and kinematical behaviors of the models are studied.  相似文献   

16.
The problem of finding nonsingular charged analogue of Schwarzschild’s interior solutions has been reduced to that of finding a monotonically decreasing function f. The models are discussed in generality by imposing reality condition on f. It is shown that the physical solutions are possible only for surface density to central density ratio greater than or equal to 2/3 i.e. $\frac{\rho_{a}}{\rho_{0}}\ge2/3$ . The unphysical nature of solutions with linear equation state has been proved. A generalization procedure has been utilized to generalize solutions by Guilfoyle (1999). Recently found solutions by Gupta and Kumar (2005a, 2005b, 2005c) are generalized by taking particular form of f and seen to have higher mass and more stable. The maximum mass is found to be 1.59482 M Θ . The models have been found to be stable once the physical requirements are established due to mass to radius less than 4/9, total charge to total mass ratio less than 1 and redshift quite low.  相似文献   

17.
We present the results of modelling the subgiant star β Hydri using seismic observational constraints. We have computed several grids of stellar evolutionary tracks using the Aarhus STellar Evolution Code (ASTEC, Christensen-Dalsgaard in Astrophys. Space Sci. 316:13, 2008a), with and without helium diffusion and settling. For those models on each track that are located at the observationally determined position of β Hydri in the Hertzsprung-Russell (HR) diagram, we have calculated the oscillation frequencies using the Aarhus adiabatic pulsation package (ADIPLS, Christensen-Dalsgaard in Astrophys. Space Sci. 316:113, 2008b). Applying the near-surface corrections to the calculated frequencies using the empirical law presented by Kjeldsen et al. (Astrophys. J. 683:L175, 2008), we have compared the corrected model frequencies with the observed frequencies of the star. We show that after correcting the frequencies for the near-surface effects, we have a fairly good fit for both l=0 and l=2 frequencies. We also have good agreement between the observed and calculated l=1 mode frequencies, although there is room for improvement in order to fit all the observed mixed modes simultaneously.  相似文献   

18.
This paper studies the stability of infinitesimal motions about the triangular equilibrium points in the elliptic restricted three body problem assuming bigger primary as a source of radiation and the smaller one a triaxial rigid body. The perturbation technique developed by Bennet (Icarus 4:177, 1965b) has been used for determination of characteristic exponents. This technique is based on Floquet’s Theory for determination of characteristic exponents in the system with periodic coefficients. The results of the study are analytical and numerical expressions are simulated for the transition curves bounding the region of stability in the μ–e plane, accurate to O(e 2). The unstable region is found to be divided into three parts. The effect of radiation parameter is significant. For small values of e, the results are in favor with the numerical analysis of Danby (Astron. J. 69:166, 1964), Bennet (Icarus 4:177, 1965b), Alfriend and Rand (AIAA J. 6:1024, 1969). The effect of radiation pressure is significant than the oblateness and triaxiality of the primaries.  相似文献   

19.
The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.  相似文献   

20.
In this paper, we have investigated plane symmetric cosmological models with negative constant deceleration parameter in Barber’s (Gen. Relativ. Gravit. 14:117, 1982) second self-creation theory in presence of perfect fluid source. For this we use a special law of variation for Hubble parameter proposed by Bermann (Nuovo Cim. B 74:182, 1983) that yields a constant deceleration parameter model of the universe. Some physical properties of the models and entropy are discussed and studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号