首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain a robust, non-parametric, estimate of the Hubble constant from the linear diameters and rotation velocities of galaxies in the recent KLUN sample, calibrated using Cepheid distances to Hubble Space Telescope Key Project galaxies. There are two key features that make our analysis considerably more robust than previous work. First, the method is independent of the spatial distribution of galaxies and is insensitive to Malmquist bias. It may, therefore, be applied to more distant samples than so-called 'plateau' methods – making it much less vulnerable to the impact of peculiar motions in the Local Supercluster. Secondly, we include information on the galaxy rotation velocities in a fully non-parametric manner: unlike the conventional Tully–Fisher relation we reconstruct a robust estimate of the cumulative distribution function of galaxy diameter at given rotation velocity, without requiring the assumption of, for example, a linear Tully–Fisher relation with symmetric Gaussian residuals.
Using this robust method we find H 0=65±6 km s−1 Mpc−1 from our analysis – in excellent agreement with many recent determinations of the Hubble parameter, although somewhat larger than previous results using galaxy diameters.  相似文献   

2.
We present an analysis of the chiral property of 667 spiral and barred spiral galaxies in the Local Supercluster (radial velocity <3 000 km s−1). The arms of a galaxy (spiral or barred spiral) can be distinguished according to their orientation (leading or trailing) relative to the direction of the rotation. We use environment of each galaxy as a subsample in order to study the chiral property of galaxies. In addition, equatorial position angle distributions of leading and trailing arm galaxies are studied. We classify our database according as their morphology, diameters, radial velocities, axial ratios and magnitudes. The distribution of trailing and leading arm galaxies in the Local Supercluster is found homogeneous. A significant dominance of either trailing or leading structures is noticed within the Virgo cluster region, suggesting that the aggregation of these structures might have already started there. The rotation axes of the galaxies in the Virgo cluster is found to lie in the equatorial plane. Chirality of galaxies is found strong for the subsamples that showed a random alignment in the equatorial position angle distribution. Possible explanations of the results will be presented.  相似文献   

3.
We have investigated the peculiar motions of clusters of galaxies in the Ursa Major (UMa) supercluster and its neighborhood. Based on SDSS (Sloan Digital Sky Survey) data, we have compiled a sample of early-type galaxies and used their fundamental plane to determine the cluster distances and peculiar velocities. The samples of early-type galaxies in the central regions (within R 200) of 12 UMa clusters of galaxies, in three main subsystems of the supercluster—the filamentary structures connecting the clusters, and in nine clusters from the nearest UMa neighborhood have similar parameters. The fairly high overdensity (3 by the galaxy number and 15 by the cluster number) suggests that the supercluster as a whole is gravitationally bound, while no significant peculiar motions have been found: the peculiar velocities do not exceed the measurement errors by more than a factor of 1.5–2. The mean random peculiar velocities of clusters and the systematic deviations from the overall Hubble expansion in the supercluster are consistent with theoretical estimates. For the possible approach of the three UMa subsystems to be confirmed, the measurement accuracy must be increased by a factor of 2–3.  相似文献   

4.
Using radio data at 1.4 GHz from the Australia Telescope Compact Array (ATCA), we identify five head–tail (HT) galaxies in the central region of the Horologium–Reticulum Supercluster (HRS). Physical parameters of the HT galaxies were determined along with substructure in the HRS to probe the relationship between environment and radio properties. Using a density enhancement technique applied to 582 spectroscopic measurements in the  2°× 2°  region about A3125/A3128, we find all five HT galaxies reside in regions of extremely high density (>100 galaxies Mpc−3). In fact, the environments surrounding HT galaxies are statistically denser than those environments surrounding non-HT galaxies and among the densest environments in a cluster. Additionally, the HT galaxies are found in regions of enhanced X-ray emission and we show that the enhanced density continues out to substructure groups of 10 members. We propose that it is the high densities that allow ram pressure to bend the HT galaxies as opposed to previously proposed mechanisms relying on exceptionally high peculiar velocities.  相似文献   

5.
We use a new expanded and partially modified sample of 1501 thin edge-on spiral galaxies from the RFGC catalog to analyze the non-Hubble bulk motions of galaxies on the basis of a generalized multiparameter Tully-Fisher relation. The results obtained have confirmed and refined our previous conclusions (Parnovsky et al. 2001), in particular, the statistical significance of the quadrupole and octupole components of the galaxy bulk velocity field. The quadrupole component, which is probably produced by tidal forces from overdense regions, leads to a difference in the recession velocities of galaxies on scales of 8000–10000 km s?1 up to 6% of their Hubble velocity. On Local Supercluster scales (3000 km s?1), its contribution increases to about 20%. Including the octupole components in the model causes the dipole component to decrease to the 1σ level. In contrast, in the dipole model, the galaxy bulk velocity relative to the frame of reference of the cosmic microwave background is 310±75 km s?1 toward the apex with l=311° and b=12°. We also consider a sample of 1493 galaxies that was drawn using a more stringent galaxy selection criterion. The difference between the results of our data analysis for this sample and for the sample of 1501 galaxies is primarily attributable to a decrease in the dipole velocity component (290±75 km s?1 toward the apex with l=310° and b=12°) and a decrease in σ by about 2%.  相似文献   

6.
We present an analysis of the spatial orientations of 1315 galaxies in 10 Abell clusters of BM type II–III (type II–III in the Bautz–Morgan system). It is found that the spin-vector orientations of the galaxies in six clusters (Abell 168, 426, 1035, 1227, 1367 and 1904) tend to lie parallel to the Local Supercluster (LSC) plane. The spin-vector projections of galaxies in six clusters (Abell 168, 1020, 1035, 1227, 1904 and 1920) are found to be oriented perpendicular with respect to the direction of the LSC centre. Three clusters (Abell 1920, 2255 and 2256) show a bimodal orientation: spin vectors tend to be oriented both parallel and perpendicular to the LSC plane. No dependence of radial velocity, distance and cluster magnitude on galaxy orientation is noticed. In a comparison with previous work, we noticed that the anisotropy might increase from early-type (BM type I) to late-type (BM types II–III and III) clusters. We notice a vanishing angular momentum for the less massive galaxy clusters (richness class 0). A significant alignment of the angular momenta of galaxies for massive clusters, e.g. the core of the Shapley Supercluster (richness class 4,   M > 1015 M  ), is found.  相似文献   

7.
We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s−1 in the directions of Hercules–Corona Borealis and Perseus–Pisces–Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find that the bulk motions in both regions are small, and consistent with zero at about the 5 per cent level. The EFAR results are in agreement with the small bulk motions found by Dale et al. on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman and Hudson et al. The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We employ a window function covariance analysis to make a detailed comparison of the EFAR peculiar velocities with the predictions of standard cosmological models. We find that the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalization of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure.  相似文献   

8.
We investigate the dependence of galaxy clustering on luminosity and spectral type using the 2dF Galaxy Redshift Survey (2dFGRS). Spectral types are assigned using the principal-component analysis of Madgwick et al. We divide the sample into two broad spectral classes: galaxies with strong emission lines ('late types') and more quiescent galaxies ('early types'). We measure the clustering in real space, free from any distortion of the clustering pattern owing to peculiar velocities, for a series of volume-limited samples. The projected correlation functions of both spectral types are well described by a power law for transverse separations in the range  2<( σ / h -1 Mpc)<15  , with a marginally steeper slope for early types than late types. Both early and late types have approximately the same dependence of clustering strength on luminosity, with the clustering amplitude increasing by a factor of ∼2.5 between L * and 4 L *. At all luminosities, however, the correlation function amplitude for the early types is ∼50 per cent higher than that of the late types. These results support the view that luminosity, and not type, is the dominant factor in determining how the clustering strength of the whole galaxy population varies with luminosity.  相似文献   

9.
We present an analysis of the orientations of 1433 galaxies found in the region  15h 48m≤α(2000) ≤ 19h 28m, −68°≤δ(2000) ≤−62°  . In this region we investigated three Abell clusters (S0794, S0797, S0805) of richness Class 0 and the Triangulum Australis cluster. Our aim is to examine non-random effects in galaxy orientations in clusters. In addition, we classified the investigated galaxies into subsamples on the basis of their axial ratio, major diameter and morphology. The spin vector orientations of total galaxies in the investigated region is found to be random. No preferred orientation is found in the clusters. We could not note any morphological dependence of the galaxy orientations in our samples. No preferred orientations can be seen for the spiral galaxies. The morphologically unidentified galaxies, galaxies having major diameters of <47 arcsec, and the nearly edge-on galaxies  ( b / a < 0.5, 0.4 < b / a ≤ 0.5)  show anisotropy: spin vectors of galaxies tend to be oriented perpendicular to the Local Supercluster plane and spin vector projections tend to point radially with respect to the Virgo cluster centre.  相似文献   

10.
Evidence is presented indicating the non-random alignment of spiral galaxies in the Local Supercluster. The form of this effect is such that the spin angular momentum vectors of intermediate-type spirals are coherently aligned in space. The results suggest the formation of galaxies in the Local Supercluster according to the fragmentation hypothesis.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

11.
The 2MFGC catalog we have used contains 18020 galaxies selected from the extended objects in the 2MASS infrared sky survey as having apparent ratios of the axes b/a<0.3. Most of them are spiral galaxies of later morphological types whose disks are seen almost edge-on. The individual distances to the 2724 2MFGC galaxies with known rotation velocities and radial velocities are determined using a multiparameter infrared Tully-Fisher relation. A list of the distances and peculiar velocities of these galaxies is presented. The collective motion of the 2MFGC galaxies relative to the cosmic microwave background is characterized by a velocity V = 199 ± 37 km/s in the direction l = 304° ±11°, b = −8°±8°. Our list is currently the most representative and uniform sample for analyzing non-Hubble motions of galaxies on a scale of ∼100 Mpc. __________ Translated from Astrofizika, Vol. 49, No. 4, pp. 527–540 (November 2006).  相似文献   

12.
We present the results of a Very Large Telescope observing programme carried out in service mode using fors 1 on ANTU (UT1) in long slit mode to determine the optical velocities of nearby low surface brightness galaxies. Outlying Local Group galaxies are of paramount importance in placing constraints on the dynamics and thus on both the age and the total mass of the Local Group. Optical velocities are also necessary to determine if the observations of H  i gas in and around these systems are the result of gas associated with these galaxies or a chance superposition with high-velocity H  i clouds or the Magellanic Stream. The data were of a sufficient signal-to-noise ration to enable us to obtain a reliable result in one of the galaxies we observed – Antlia – for which we have found an optical heliocentric radial velocity of 351±15 km s−1.  相似文献   

13.
It is shown that high-redshift quasars of bright apparent magnitude are concentrated in the direction of the centre of the Local Group of galaxies. A number of them are distributed along a line originating from the Local Group companion galaxy, M 33. A similar, but shorter and fainter line of quasars is seen emanating from the spiral galaxy NGC 300 in the next nearest, Sculptor Group of galaxies. The concentration of bright quasars in the Local Group direction is supported by bright radio sources catalogued in high-frequency surveys. One of the consequences of this large-scale inhomogeneity is to explain the different gradient of radio source counts in the direction of the Local Supercluster, a result discovered in 1978 but never investigated further. Previously reported homogeneity and isotropy of radio-source counts over the sky would seem to be an effect of integrating nearby, large-scale groupings with more distant, smaller-scale groupings over different directions in the sky. More careful analyses as a function of flux strength and spectral index on various scales over the sky are now required. Previous conclusions about radio source and quasar luminosity and number evolution drawn from logN- logS counts would then need to be re-evaluated.  相似文献   

14.
We use the FUV fluxes measured with the GALEX to study the star formation properties of galaxies collected in the “Local Orphan Galaxies” catalog (LOG). Among 517 LOG galaxies having radial velocities V LG < 3500 km/s and Galactic latitudes |b| > 15°, 428 objects have been detected in FUV. We briefly discuss some scaling relations between the specific star formation rate (SSFR) and stellar mass, HI-mass, morphology, and surface brightness of galaxies situated in extremely low density regions of the Local Supercluster. Our sample is populated with predominantly late-type, gas-rich objects with the median morphological type of Sdm. Only 5% of LOG galaxies are classified as early types: E, S0, S0/a, however, they systematically differ from normal E and S0 galaxies by lower luminosity and presence of gas and dust. We find that almost all galaxies in our sample have their SSFR below 0.4 [Gyr?1]. This limit is also true even for a sample of 270 active star-burst Markarian galaxies situated in the same volume. The existence of such a quasi-Eddington limit for galaxies seems to be a key factor which characterizes the transformation of gas into stars at the current epoch.  相似文献   

15.
The EFAR project is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. Here we describe the maximum-likelihood algorithm we developed to investigate the correlations between the parameters of the EFAR data base. One-, two- and three-dimensional Gaussian models are constructed to determine the mean value and intrinsic spread of the parameters, and the slopes and intrinsic parallel and orthogonal spread of the Mg2–Mg b ', Mg2– σ , Mg b '– σ relations, and the Fundamental Plane. In the latter case, the cluster peculiar velocities are also determined. We show that this method is superior to 'canonical' approaches of least-squares type, which give biased slopes and biased peculiar velocities. We test the algorithm with Monte Carlo simulations of mock EFAR catalogues, and derive the systematic and random errors on the estimated parameters. We find that random errors are always dominant. We estimate the influence of systematic errors resulting from the way clusters were selected, and the hard limits and uncertainties in the selection function parameters for the galaxies. We explore the influence of uniform distributions in the Fundamental Plane parameters and the errors. We conclude that the mean peculiar motions of the EFAR clusters can be determined reliably. In particular, the placement of the two EFAR sample regions relative to the Lauer & Postman dipole allows us to constrain strongly the amplitude of the bulk motion in this direction. We justify a posteriori the use of a Gaussian modelling for the galaxy distribution in the Fundamental Plane space, by showing that the mean likelihood of the EFAR sample is obtained in 10 to 30 per cent of our simulations. We derive the analytical solution for the maximum-likelihood Gaussian problem in N dimensions in the presence of small errors.  相似文献   

16.
We discuss the distribution of radial velocities of galaxies belonging to the Local Group. Two independent samples of galaxies as well as several methods of reduction from the heliocentric to the galactocentric radial velocities are explored. We applied the power spectrum analysis using the Hann function as a weighting method, together with the jackknife error estimation. We performed a detailed analysis of this approach. The distribution of galaxy redshifts seems to be non‐random. An excess of galaxies with radial velocities of ∼24 km s–1 and ∼36 km s–1 is detected, but the effect is statistically weak. Only one peak for radial velocities of ∼24 km s–1 seems to be confirmed at the confidence level of 95%. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We have studied the poor southern cluster of galaxies S639. Based on new Strömgren photometry of stars in the direction of the cluster, we confirm that the Galactic extinction affecting the cluster is large. We find the extinction in Johnson B to be AB =0.75±0.03. We have obtained new photometry in Gunn r for E and S0 galaxies in the cluster. If the Fundamental Plane is used for determination of the relative distance and the peculiar velocity of the cluster, we find a distance, in velocity units, of (5706±350) km s−1, and a substantial peculiar velocity, (839±350) km s−1. However, the colours and the absorption line indices of the E and S0 galaxies indicate that the stellar populations in these galaxies are different from those in similar galaxies in the two rich clusters Coma and Hydra I. This difference may severely affect the distance determination and the derived peculiar velocity. The data are consistent with a non-significant peculiar velocity for S639 and the galaxies in the cluster being on average 0.2 dex younger than similar galaxies in Coma and Hydra I. The results for S639 caution that some large peculiar velocities may be spurious and caused by unusual stellar populations.  相似文献   

18.
A sample of 145 galaxies having radial velocities relative to the centroid of the Local Group V LG < 500 km/sec and estimated photometric distances D < 8 Mpc is considered. The field of peculiar velocities of these galaxies is estimated using the tensor of the local value of the Hubble constant H ij , with principal values of 81:62:48 in km/sec·Mpc, which have a standard error of 4 km/sec·Mpc. The minor axis of the Hubble ellipsoid is oriented almost along the polar axis of the Local Supercluster, while the major axis forms an angle = (29 ± 5)° with the direction toward the center of the Virgo Cluster. Such a configuration of the peculiar-velocity field shows unsatisfactory agreement with the model of a spherically symmetric flow of galaxies toward the Virgo Cluster. Rotation of the Local Supercluster may be one reason for this difference. The peculiar velocities of galaxies within a volume with D < 8 Mpc are characterized by a dispersion V = 74 km/sec, a considerable part of which is due to the virial motions of galaxies in groups and to distance errors. For field galaxies, located in a layer of 1 < D < 3 Mpc around the Local Group, the radial-velocity dispersion does not exceed 25 km/sec. The velocity—distance relation, constructed from the 20 closest galaxies around the Local Group with D < 3 Mpc and with errors (D) < 0.2 Mpc, exhibits the expected effect of gravitational deceleration. Using the estimate of R 0 = (0.96 ± 0.05) Mpc for the observed radius of the zero-velocity sphere, we determined the total mass of the Local Group to be (1.2 ± 0.2)·1012 M , which agrees well with the sum of the virial masses of the subgroups of galaxies around the Local Group and M31. The ratio of the Local Group's total mass (within R 0) to its luminosity is M/L = (23 ± 4) M /L , which does not require the existence of supermassive dark halos around our Galaxy and M31.  相似文献   

19.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   

20.
We investigate a spatially flat cold dark matter model (with the matter density parameter     with a primordial feature in the initial power spectrum. We assume that there is a bump in the power spectrum of density fluctuations at wavelengths     , which corresponds to the scale of superclusters of galaxies . There are indications for such a feature in the power spectra derived from redshift surveys and also in the power spectra derived from peculiar velocities of galaxies. We study the mass function of clusters of galaxies, the power spectrum of the cosmic microwave background (CMB) temperature fluctuations, the rms bulk velocity and the rms peculiar velocity of clusters of galaxies. The baryon density is assumed to be consistent with the big bang nucleosynthesis value. We show that with an appropriately chosen feature in the power spectrum of density fluctuations at the scale of superclusters, the mass function of clusters, the CMB power spectrum, the rms bulk velocity and the rms peculiar velocity of clusters are in good agreement with the observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号