首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

2.
New field and thermobarometric work in the Californian Salinian block clarifies current and pre-Tertiary relationships between the schist of Sierra de Salinas and Cretaceous arc-related granitic rocks. The contact is variably preserved as a brittle fault and high-temperature mylonite zone, the Salinas shear zone, which represents the contact between North America and sediments accreted above the Farallon slab between ∼ 76 Ma and ∼ 70 Ma. Near granulite facies, prograde replacement of hornblende with clinopyroxene is associated with deformation of plutonic rocks at the base of the upper plate. In the lower plate, the schist of Sierra de Salinas, garnet–biotite thermometry indicates decreasing temperatures down-section from at least 714 °C to ∼ 575 °C over an exposed thickness of ∼ 2.5 km, consistent with petrologic evidence of an inverted metamorphic gradient. The measured temperatures are significantly higher than observed at shallow levels above subducting slabs or predicted by 2D computational models assuming low shear stresses. Previous workers have called upon shear heating to explain similar observations in the correlative Pelona schist, an unlikely scenario given the results of recent rock deformation experiments which predict that feldspar–quartz–mica aggregates are far too weak to withstand stresses of ∼ 70 MPa required by the shear heating hypothesis. As an alternative, we propose that high temperatures resulted from conductive heating while the leading edge of the schist traveled ∼ 150 km beneath the recently active Salinian continental arc during the initiation of shallow subduction. Weakening of the schist due to high temperatures helped facilitate the collapse of the Salinian arc as the schist was emplaced. Schist emplacement coincided with loss of lower, mafic portions of the arc, and therefore evolution of the Southern California crust towards a more felsic composition.  相似文献   

3.
A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLE and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995). Within the POLE, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude) with an adjacent downward current branch at its polar side at (70.5–71.3°). The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLE and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.  相似文献   

4.
The suggestion that the polar cap can completely disappear under certain northward IMF conditions is still controversial. We know that the size of the polar cap is strongly controlled by the interplanetary magnetic field (IMF). Under a southward IMF, the polar cap is usually large and filled with weak diffuse polar rain electrons. The polar cap shrinks under a northward IMF. Here we use the global auroral images and coincident particle measurements on May 15, 2005 to show that the discrete arcs (due to precipitation of both electrons and ions) expanded from the dayside oval to the nightside oval and filled the whole polar ionosphere after a long (8 h) and strong (~5–30 nT) northward IMF Bz, The observations suggested that the polar cap disappeared under a closed magnetosphere.  相似文献   

5.
Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause.Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically <0.1 ergs/cm2 s, and lacks associated ion precipitation. A second category of Sun-aligned arcs with energy flux >0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the presence of ions does not fit the properties of polar rain, which can in any event be nearly absent for northward interplanetary magnetic field). One theory is that such arcs are associated with merging tailward of the cusp. Both of these common types of sun-aligned arcs fade within about 30 min of a southward IMF turning.The third, and rarest, category of sun-aligned arcs are intense, well detached from the auroral oval, contain plasma sheet origin ion precipitation as well as electrons, and persist for hours after a southward turning. These intense detached sun-aligned arcs can rapidly cross the polar cap, sometimes multiple times. Most events discussed in the literature as “theta-aurora” do not fit into this category (for example, although they may appear detached in images, they abut the oval in particle data, and do not have the persistence of detached events under southward IMF turnings). It is possible that no single theory can account for all three types of sun-aligned arcs.Solar energetic particle (SEP) events are at times used to demarcate polar cap open/closed boundaries. Although this works at times, examples exist where this method fails (e.g., very quiet conditions for which SEP reaches below L=4), and the method should be used with caution. Finally, it is shown that, although it is rare, the polar cap can at times completely close.  相似文献   

6.
《Continental Shelf Research》1998,18(9):1039-1056
The detailed three-dimensional structure of the Kuroshio frontal eddy along the shelf edge of the East China Sea is revealed by the CTD, ADCP, and satellite-tracked drifter observations. The length and width of the cold core of the Kuroshio frontal eddy are about 60 and 40 km, respectively, and its phase speed is about 30 cm s-1. The calculated buoy tracks with the use of the observed ADCP data well reproduce the observed tracks of satellite-tracked drifters around the frontal eddy. The observed maximum horizontal velocity around this frontal eddy are 40 cm s-1 and the center of this eddy shifts offshore in the deep layer. Nutrient is advected onshore across the shelf edge by passing of this frontal eddy while it is advected offshore without the frontal eddy at the shelf edge.  相似文献   

7.
The polar wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere to the magnetosphere, and it primarily consists of H+, He+ and O+ ions and electrons. Statistical and episodic studies based primarily on ion composition observations on the ISIS-2, DE-1, Akebono and Polar satellites over the past four decades have confirmed the existence of the polar wind. These observations spanned the altitude range from 1000 to ∼50,500 km, and revealed several important features in the polar wind that are unexpected from “classical” polar wind theories. These include the day–night asymmetry in polar wind velocity, which is 1.5–2.0 times larger on the dayside; appreciable O+ flow at high altitudes, where the velocity at 5000–10,000 km is of 1–4 km/s; and significant electron temperature anisotropy in the sunlit polar wind, in which the upward-to-downward electron temperature ratio is 1.5–2. These features are attributable to a number of “non-classical” polar wind ion acceleration mechanisms resulting from strong ionospheric convection, enhanced electron and ion temperatures, and escaping atmospheric photoelectrons. The observed polar wind has an averaged ion temperature of ∼0.2–0.3 eV, and a rate of ion velocity increase with altitude that correlates strongly with electron temperature and is greatest at low altitudes (<4000 km for H+). The rate of velocity increase below 4000 km is larger at solar minimum than at solar maximum. Above 4000 km, the reverse is the case. This suggests that the dominant polar wind ion acceleration process may be different at low and high altitudes, respectively. At a given altitude, the polar wind velocity is highly variable, and is on average largest for H+ and smallest for O+. Near solar maximum, H+, He+, and O+ ions typically reach a velocity of 1 km/s near 2000, 3000, and 6000 km, respectively, and velocities of 12, 7, and 4 km/s, respectively, at 10,000 km altitude. Near solar minimum, the velocity of all three species is smaller at high altitudes. Observationally it is not always possible to unambiguously separate an energized “non-polar-wind” ion such as a low-energy “cleft ion fountain” ion that has convected into a polar wind flux tube from an energized “polar-wind” ion that is accelerated locally by “non-classical” polar-wind ion acceleration mechanisms. Significant questions remain on the relative contribution between the cleft ion fountain, auroral bulk upflow, and the topside polar-cap ionosphere to the O+ polar wind population at high altitudes, the effect of positive spacecraft charging on the lowest-energy component of the H+ polar wind population, and the relative importance of the various classical and non-classical ion acceleration mechanisms. These questions pose several challenges in future polar wind observations: These include measurement of the lowest-energy component in the presence of positive spacecraft potential, definitive determination and if possible active control of the spacecraft potential, definitive discrimination between polar wind and other inter-mixed thermal ion populations, measurement of the three-dimensional ion drift velocity vector and the parallel and perpendicular ion temperatures or the detailed three-dimensional velocity distribution function, and resolution of He+ and other minor ion species in the polar wind population.  相似文献   

8.
9.
Narrow bipolar events (NBEs) are a distinct class of intra-cloud lightning discharge. In this paper we present observations of 10 negative and 67 positive such events in East China. Positive NBEs occurred at 7–12 km altitude above mean sea level (MSL) with a mean altitude of 9.5 km, and negative NBEs occurred at 14–16 km altitude. Electrical/channel characteristics of these events were derived from NBE pulse waveforms based on the transmission-line model. On average, the peak current moment and the charge moment change of a NBE event is 15 kA km, and 0.12 C km, respectively. The mean time for the propagation of current front along the channel is 2.2 μs. The upper limit on channel length for NBEs in this study is 510–1060 m, the lower limit on discharge current amplitude is 12.5–43.2 kA, and the minimum charge transfer is 0.1–0.3 C.  相似文献   

10.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

11.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

12.
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500–1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30–10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (∼10–7 km), it is the contrasting degrees of Neogene shortening (∼16–6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.  相似文献   

13.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

14.
We present 23 new ages from three volcanic complexes of the Lesser Antilles arc in Martinique Island (French West Indies). These ages obtained with the K–Ar Cassignol–Gillot technique are distributed within the whole Quaternary. They allowed us to reconstruct a detailed history of successive volcanic growth and flank collapse stages. Trois Ilets Volcanism has been active during at least 2 Ma, between 2.35 ± 0.03 Ma and 346 ± 27 ka, with monogenetic volcanoes of basaltic-andesite to andesitic compositions. We here propose that magma mixing, which characterizes this volcanism, could have been initiated between 617 and 346 ka by the activation of arc-parallel and arc-transverse fault systems. Meanwhile, the Carbet complex was active 25 km to the north from 998 ± 14 to 322 ± 6 ka, and was partially destroyed by a flank collapse after 602 ± 10 ka. Together with geochemical data, our ages show that Mount Conil and Mount Pelée volcanoes are parts of the same edifice sharing a single magmatic reservoir. Mount Conil started to emerge before 543 ± 8 ka, and andesites erupted until 127 ± 2 ka, when a flank collapse destroyed the western flank of the edifice, probably triggering the emplacement of Piton Marcel, the last eruption of this first stage. We note that this collapse occurred during the transition from oxygen stages 6 to 5, i.e. during glacial to interglacial change, when eustatic level rapidly increased. After that, and until present, Mount Pelée volcano was built with periods of cone growth intercalated by flank collapse events. We here show that a peak of activity occurred between 550 and 330 ka in western Martinique within the three complexes, which are spaced of 15–25 km. Since 330 ka volcanic activity is limited to the northernmost Mount Conil–Mount Pelée complex. Our data are in agreement with the regional scale observations that the whole recent Lesser Antilles arc was subject to a high volcanic activity since 600 ka, probably linked to an increase in magma production. This permanent establishment of rising magma in regularly spaced batches and tectonically controlled, could explain the individual chemical evolution of each edifice and the different eruptive dynamisms occurring at the same time along the recent arc.  相似文献   

15.
Observations are presented of large-amplitude internal waves (LAIWs) generated by the steepening of the internal tide on the Australian North West Shelf (NWS) over a 4-month period extending from strongly stratified summer conditions to weakly stratified winter conditions. The observations are from a site in water depth of 124 m where current and temperature measurements were made from a fixed vertical mooring and a benthic L-shaped spatial array. The observations show the LAIWs at this site to be characterized by strong seasonal variability, with energetic LAIWs of depression being dominant during summer and weaker LAIWs of elevation being dominant during the winter months as the stratification weakens, the upper mixed layer deepens, and the thermocline is close to the bottom. Waves were also seen to propagate from a range of directions towards the observation site. Modeling using the Regional Ocean Modeling System (ROMS v2.1) revealed that internal tide generation in the area occurred at water depths of between 400 and 600 m along an arc of approximately 120 km in length, some 70 km to the northwest of our experimental site. The results demonstrate both the 3D nature as well as the seasonal variation of the LAIW field.  相似文献   

16.
The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U–Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111–110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane.The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption.Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic–ultramafic substrate.  相似文献   

17.
Flow bursts within the ionosphere are the ionospheric signatures of flow bursts in the plasma sheet and have been associated with poleward boundary intensifications (PBIs). Some PBIs extend equatorward from the polar cap boundary, where they can be roughly divided into north–south-aligned and east–west-aligned structures. In this paper, we present two flow burst events observed by the new Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) in the pre-midnight auroral zone on 28 April 2007, one towards the west and the other towards the east. In both cases, enhanced flows lasted for about 8–10 min with peak velocities exceeding 1500 m/s. The concurrently measured electron density showed that the flow bursts occurred in low conductivity regions. However, near the poleward (equatorward) edge of the westward (eastward) flow burst, strong electron density enhancements were observed in the E region, indicating the presence of discrete auroral arcs. Auroral images from the Polar spacecraft were available at the time of the eastward flow burst and they indicate that this burst was associated with an east–west-aligned auroral structure that connected at later MLT to a north–south structure. In addition, simultaneous precipitating particle energy spectrum measured by the the Defense Meteorological Satellites Program (DMSP) F13 satellite reveals that this auroral structure resulted from mono-energetic electron precipitation associated with a significant field-aligned potential drop. These observations show direct evidence of the relationship between flow bursts, field-aligned currents and auroral intensifications, and suggest that eastward/westward flow bursts are associated with east–west-oriented PBI structures that have extended well within the plasma sheet. This is in contrast to the equatorward-directed flow that has been previously inferred for PBIs near the polar cap boundary and for north–south auroral structures. This paper illustrates the use of the PFISR radar for studying the magnetosphere–ionosphere coupling of flow bursts.  相似文献   

18.
The microseismicity of the southeastern-most Zagros is examined by high-resolution data recorded by a temporary dense local seismic network. The seismicity defines a diffuse pattern, mostly located beneath folds in the southern part of the High Zagros Fault (HZF). Seismicity dips gently northward in the depth range 6–25 km, implying slip on a major intracrustal thrust fault extending to the north of the Main Zagros Reverse Fault (MZRF) which seems to connect to the Mountain Frontal Fault (MFF). Furthermore, observed focal mechanisms suggest transpressive motion on the HZF located west of the Zendan-Minab-Palami (ZMP) fault system and striking obliquely to the convergent motion. These observations suggest that the transition zone between the Zagros continental collision zone and the Makran oceanic subduction zone is not confined to the east of the ZMP and some part of the this diffuse transition is accommodated north of the Hormuz Strait in the west by partitioning between strike-slip and shortening components. The Zagros reverse domain is terminated by a transpressive tectonic regime. Moho depth beneath the MZRF, deduced from receiver functions, is almost 45 km thinner than is observed in the central and northern parts of the Zagros. These observations support a model of active underthrusting of the Arabian plate beneath central Iran in the southeastern-most Zagros.  相似文献   

19.
Explosion deep seismic sounding data sections of high quality had been obtained with RV Meteor in the Reykjanes Iceland Seismic Project (RRISP77 [Angenheister, G., Gebrande, H., Miller, H., Goldflam, P., Weigel, W., Jacoby, W.R., Pálmason, G., Björnsson, S., Einarsson, P., Pavlenkova, N.I., Zverev, S., Litvinenko, I.V., Loncarecic, B., Solomon, S., 1980. Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J. Geophys. 47, 228–238]) which close an information gap near 62°N. Preliminary results were presented by Weigel [Weigel, W., 1980. Aufbau des Reykjanes Rückens nach refraktionsseismischen Messungen. In: Weigel, W. (Ed.), Reykjanes Rücken, Island, Norwegischer Kontinentalrand. Abschlusskolloquium, Hamburg zur Meteor-Expedition, vol. 45. DFG, Bonn, pp. 53–61], and here we report on the data and results of interpretation. Clear refracted phases to 90 km distance permit crustal and uppermost mantle structure to be modelled by ray tracing. The apparent P-wave velocities are around 4.5, 6–6.5, 7–7.6 and 8.2–8.7 km/s, but no wide-angle reflections have been clearly seen. Accompanying sparker reflection data reveal thin sediment ponds in the axial zone and up to 400 m thick sediments at 10 Ma crustal age. Ray tracing reveals the following model below the sediments: (1) a distinct, 1–2 km thick upper crust (layer 2A) with Vp increasing with age (to 10 Ma) from <3.4 to 4.9 km/s and with a vertical gradient of 0.1–0.2 km/s/km, (2) a lower crust or layer 3 beginning at depths of 2 (axis) to 4 km (10 Ma age) below sea level with 6.1–6.8 km/s and similar vertical gradients as above, (3) the lower crust bottoms at 5.2–9.5 km depth below sea level (0–10 Ma) with a marked discontinuity, underneath which (4) Vp rises from about 7.5–7.8 km/s (0–10 Ma) with a positive vertical gradient of, again, 0.1–0.2 km/s/km such that 8 km/s would be reached at 12 km and deeper near the axis. Our preferred interpretation is that the mantle begins at the distinct discontinuity (“Moho”), but a deeper “Moho” of Vp  8 km/s cannot be excluded. From Iceland southward to 60°N several experiments show a decrease of crustal thickness from 14 to 8 km. Velocity trends with age across the ridge reflect cooling and filling of cracks, and thickness trends probably suggest volcanic productivity variations as previously suggested.Gravity inversion concentrates on a profile across the ridge with the above seismic a priori information; with 0.2–0.5 km depth uncertainty it leads to a good fit (±2.5 mGal where seismic data exist). Best fitting densities are (in kg/m3) for sediments, 2180; upper crust, 2450–2570; lower crust, 2850–2940; mantle lithosphere, 3215–3240 with a deficit for an asthenospheric wedge of no more than −100 kg/m3. The morphological ridges and troughs superimposed on the SE ridge flank are partly correlated, partly anti-correlated with the Bouguer anomaly and suggest that variable crustal density variations accompany the morphology variations.  相似文献   

20.
Reflection seismic data were acquired along a c. 23 km long profile over the Pärvie Fault system with a nominal receiver and source spacing of 20 m. An hydraulic breaking hammer was used as a source, generating signals with a penetration depth of about 5–6 km. Steeply dipping reflections from the end-glacial faults are observed, as well as sub-horizontal reflections. The location and orientation of the reflections from the faults agree well with surface geological observations of fault geometries. Reflections from a potential fourth end-glacial fault is observed further to the east along the profile. The more sub-horizontal reflections may originate from gabbroic bodies within the granitic basement or from deeper lying greenstones. Our results indicate that the end-glacial faults dip at moderate to steep dips down to at least 2–3 km depth, and possibly continue at this dip to depths of 6 km. This result has significant implications for determining the state of stress required to activate the faults in the past and in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号