首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSS) are two solar phenomena that produce large-scale structures in the interplanetary (IP) medium. CMEs evolve into interplanetary CMEs (ICMEs) and the HSS result in corotating interaction regions (CIRs) when they interact with preceding slow solar wind. This paper summarizes the properties of these structures and describes their geoeffectiveness. The primary focus is on the intense storms of solar cycle 23 because this is the first solar cycle during which simultaneous, extensive, and uniform data on solar, IP, and geospace phenomena exist. After presenting illustrative examples of coronal holes and CMEs, I discuss the internal structure of ICMEs, in particular the magnetic clouds (MCs). I then discuss how the magnetic field and speed correlate in the sheath and cloud portions of ICMEs. CME speed measured near the Sun also has significant correlations with the speed and magnetic field strengths measured at 1 AU. The dependence of storm intensity on MC, sheath, and CME properties is discussed pointing to the close connection between solar and IP phenomena. I compare the delay time between MC arrival at 1 AU and the peak time of storms for the cloud and sheath portions and show that the internal structure of MCs leads to the variations in the observed delay times. Finally, we examine the variation of solar-source latitudes of IP structures as a function of the solar cycle and find that they have to be very close to the disk center.  相似文献   

2.
Using over 20 years of ground-based magnetometer data from the CANOPUS/CARISMA magnetometer array, we present a statistical characterisation of Pc5 ultra-low frequency (ULF) power in the 2–10 mHz band as a function of magnetic local time (MLT), L-shell, and solar wind speed. We examine the power across L-shells between 4.2 and 7.9, using data from the PINA, ISLL, GILL and FCHU stations, and demonstrate that there is a significant MLT dependence in both the H- and D-component median 2–10 mHz power during both fast (>500 km/s) and slow (<500 km/s) solar wind speeds. The H-component power consistently dominates over D-component power at all MLTs and during both fast and slow solar wind. At the higher-L stations (L>5.4), there are strong MLT power peaks in the morning and midnight local time sectors; the morning sector dominating midnight during fast solar wind events. At lower L-shells, there is no evidence of the midnight peak and the 2–10 mHz power is more symmetric with respect to MLT except during the fastest solar wind speeds. There is little evidence in the ground-based power of a localised MLT peak in ULF power at dusk, except at the lowest L-shell station, predominantly in the H-component. The median 2–10 mHz power increases with an approximate power law dependence on solar wind speed, at all local times across the L-shell domain studied in both components. The H-component power peaks at the latitude of the GILL station, with significantly lower power at both higher and lower L-shells. Conversely, the D-component power increases monotonically. We believe that this is evidence for 2–10 mHz power accumulating at auroral latitudes in field line resonances. Finally, we discuss how such ULF wave power characterisation might be used to derive empirical radiation belt radial diffusion coefficients based on, and driven by, the solar wind speed dependence of ULF wave power.  相似文献   

3.
Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18–30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20–22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.  相似文献   

4.
The total solar eclipse of 29 March, 2006 which was visible at Ibadan (7.55°N, 4.56°E), south-western Nigeria was utilized to document atmospheric surface-layer effects of the eclipse for the first time in Nigeria. The meteorological parameters measured are global radiation, net radiation, wind speed (at different heights), atmospheric pressure and soil temperature (5, 10 and 30 cm), moisture and heat flux and rainfall. The results revealed remarkable dynamic atmospheric effects. The observations showed that the incoming solar radiation, net radiation and air temperature were significantly affected.There was an upsurge of wind speed just before the first contact of the eclipse followed by a very sharp decrease in wind speed due to the cooling and stabilization of the atmospheric boundary layer. The atmospheric pressure lags the eclipse maximum by 1 h 30 min, while the soil temperature at 5 and 10 cm remain constant during the maximum phase of the eclipse.  相似文献   

5.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

6.
A new empirical model nowcasting and predicting a proxy to the geomagnetic K index is developed, which is based on the combined use of solar wind parameters and ground-based magnetic data. The present approach implements the previously developed solar wind-based MAK model, calibrating its values with magnetogram-derived K index. The new model is named as Hybrid Dourbes K (HDK) model. The HDK nowcast model provides the quantity Kdf, obtained by solar wind-based Ksw and corrected with a combination of differences between several past values of Kd and Ksw. The model error of the nowcast Kdf is found to be 0.38 KU, or nearly twice less than that of the MAK model. Kdf has a good predictability. Prediction made by weighted extrapolation 6 h ahead carries an error of 1.0 KU, while for the first 1 h the error is 0.58 KU only.  相似文献   

7.
New observations, obtained by the accelerometer onboard the CHAMP satellite, reveal a detailed picture of the thermospheric zonal wind. Based on three years of data (2002–2004) we have studied the longitudinal dependence of the zonal delta wind (deviations from the zonal average) at the dip equator. The large number of passes (33 750) allows to consider several aspects of the wind characteristics at the same time. For this analysis we derived the longitudinal variation of the zonal delta wind at about 400 km altitude and investigated its dependence on solar flux, magnetic activity, and season. Major longitudinal dependences are confined to the morning hours, 03-09 local time (LT). The amplitude of the delta wind is approximately proportional to the latitudinal displacement of the magnetic dip equator from the geographic equator. The direction of the delta wind reverses sign between the June and December Solstices. During Equinox seasons these large scale features are almost absent. The flux level of solar EUV has no significant influence on the longitudinal variations. A dependence on magnetic activity could only be found during the post-sunset hours, 18-21 LT. Performing a Fourier transform of our delta wind velocities revealed a dominance of the wavenumber 4 in the Equinox data at some LT sectors. The wave-4 structure is a prevailing feature in the slowly precessing satellite frame, which has been recently reported, e.g. in nonmigrating tidal temperature measurements of the SABER instrument on the TIMED satellite in the Mesosphere Lower Thermosphere (MLT) region. Therefore, this statistical study of zonal wind longitudinal dependences provides new observational evidence for the coupling of the various atmospheric layers by nonmigrating tides.  相似文献   

8.
Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2–1.49 °C) and higher temperature rise (1.5–2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.  相似文献   

9.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

10.
The polar wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere to the magnetosphere, and it primarily consists of H+, He+ and O+ ions and electrons. Statistical and episodic studies based primarily on ion composition observations on the ISIS-2, DE-1, Akebono and Polar satellites over the past four decades have confirmed the existence of the polar wind. These observations spanned the altitude range from 1000 to ∼50,500 km, and revealed several important features in the polar wind that are unexpected from “classical” polar wind theories. These include the day–night asymmetry in polar wind velocity, which is 1.5–2.0 times larger on the dayside; appreciable O+ flow at high altitudes, where the velocity at 5000–10,000 km is of 1–4 km/s; and significant electron temperature anisotropy in the sunlit polar wind, in which the upward-to-downward electron temperature ratio is 1.5–2. These features are attributable to a number of “non-classical” polar wind ion acceleration mechanisms resulting from strong ionospheric convection, enhanced electron and ion temperatures, and escaping atmospheric photoelectrons. The observed polar wind has an averaged ion temperature of ∼0.2–0.3 eV, and a rate of ion velocity increase with altitude that correlates strongly with electron temperature and is greatest at low altitudes (<4000 km for H+). The rate of velocity increase below 4000 km is larger at solar minimum than at solar maximum. Above 4000 km, the reverse is the case. This suggests that the dominant polar wind ion acceleration process may be different at low and high altitudes, respectively. At a given altitude, the polar wind velocity is highly variable, and is on average largest for H+ and smallest for O+. Near solar maximum, H+, He+, and O+ ions typically reach a velocity of 1 km/s near 2000, 3000, and 6000 km, respectively, and velocities of 12, 7, and 4 km/s, respectively, at 10,000 km altitude. Near solar minimum, the velocity of all three species is smaller at high altitudes. Observationally it is not always possible to unambiguously separate an energized “non-polar-wind” ion such as a low-energy “cleft ion fountain” ion that has convected into a polar wind flux tube from an energized “polar-wind” ion that is accelerated locally by “non-classical” polar-wind ion acceleration mechanisms. Significant questions remain on the relative contribution between the cleft ion fountain, auroral bulk upflow, and the topside polar-cap ionosphere to the O+ polar wind population at high altitudes, the effect of positive spacecraft charging on the lowest-energy component of the H+ polar wind population, and the relative importance of the various classical and non-classical ion acceleration mechanisms. These questions pose several challenges in future polar wind observations: These include measurement of the lowest-energy component in the presence of positive spacecraft potential, definitive determination and if possible active control of the spacecraft potential, definitive discrimination between polar wind and other inter-mixed thermal ion populations, measurement of the three-dimensional ion drift velocity vector and the parallel and perpendicular ion temperatures or the detailed three-dimensional velocity distribution function, and resolution of He+ and other minor ion species in the polar wind population.  相似文献   

11.
L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations observed from Kolkata (22.58°N lat, 88.38° E long, 32°N dip), over a solar cycle 1996–2006 are presented in this paper. Situated near the northern crest of the equatorial anomaly, it is an excellent platform for scintillation studies. Based on 11 years’ data, an attempt is made to develop models of hourly percentage occurrence of scintillations for the rising and declining phases of solar cycle using Neural Network. The relation between fading rate at VHF with the S4 index at L-band is also investigated.  相似文献   

12.
以观测到的光球视向磁场、K-日冕亮度作为输入,以相应的统计结果为约束条件,利用磁流体力学方程组,给出了等离子体及磁场各参数在源表面上的二维分布.其结果与同期的卫星观测数据和已有的统计结果相比较,显示出相当程度的一致性.  相似文献   

13.
The results from the numerical calculations of the global distribution of topside ionospheric parameters such as H+ ions and ion and electron temperatures up to 1500 km height are presented for equinoctial conditions at solar minimum. Calculations are carried out using the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP) developed in WD IZMIRAN, and using a new calculation block for electric fields due to dynamo and of magnetospheric origin. A comparison of two sets of calculations of magnetospheric convection electric field for a given potential difference is carried out, one through polar caps and other through field aligned currents of first zone. It is shown that the distribution of the electric potential obtained through field aligned currents of first zone is more self-consistent than that through polar caps. The light ion trough in H+ ions is deeper and occupies larger region for the potential difference through polar cap. For a given potential difference through field aligned current, at 1500 km, the maximum ion temperature is 150 K higher, minimum ion temperature is 200 K lower and maximum electron temperature is 100 K higher than those obtained for the same potential difference through polar caps. It is concluded that for modeling the electric field of magnetospheric origin, it is necessary to use the potential difference through field aligned current of first zone instead of through polar caps.  相似文献   

14.
To study the relations of the polar cap (PC) magnetic activity (characterized by the PC index) to magnetic disturbances in the auroral zone (AL index) the behavior of 62 repetitive bay-like magnetic disturbances has been analyzed. It was found that the PC index, derived as a proxy of the geoeffective interplanetary electric field Em, starts to increase, on average, about 30 min ahead of the magnetic disturbance onset. Value of Em and PC~2 mV/m seems to be necessary for development of the repetitive bay-like disturbances with peak AL exceeding 400 nT. Growth phase duration (the time interval between the start of PC increase and AL sudden onset) and intensity of magnetic disturbances in the auroral zone (AL max) highly correlate with the PC growth rate. The growth phase reduces to a few minutes, if the PC index suddenly jumps above ~6–8 mV/m. The sharp development of Birkeland current wedge during expansion phase insignificantly influences the polar cap activity: the corresponding PC index increase does not exceed 10–20% of the PC value. It is concluded that the PC index may be considered as a convenient proxy of the solar wind energy input into the magnetosphere.  相似文献   

15.
Understanding climate change is an active topic of research. Much of the observed increase in global surface temperature over the past 150 years occurred prior to the 1940s and after the 1980s. The main causes invoked are solar variability, changes in atmospheric greenhouse gas content or sulfur due to natural or anthropogenic action, or internal variability of the coupled ocean–atmosphere system. Magnetism has seldom been invoked, and evidence for connections between climate and magnetic field variations have received little attention. We review evidence for correlations which could suggest such (causal or non-causal) connections at various time scales (recent secular variation ∼ 10–100 yr, historical and archeomagnetic change ∼ 100–5000 yr, and excursions and reversals ∼ 103–106 yr), and attempt to suggest mechanisms. Evidence for correlations, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is still tenuous. Correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature is stronger. It suggests that solar irradiance could have been a major forcing function of climate until the mid-1980s, when “anomalous” warming becomes apparent. The most intriguing feature may be the recently proposed archeomagnetic jerks, i.e. fairly abrupt (∼ 100 yr long) geomagnetic field variations found at irregular intervals over the past few millennia, using the archeological record from Europe to the Middle East. These seem to correlate with significant climatic events in the eastern North Atlantic region. A proposed mechanism involves variations in the geometry of the geomagnetic field (f.i. tilt of the dipole to lower latitudes), resulting in enhanced cosmic-ray induced nucleation of clouds. No forcing factor, be it changes in CO2 concentration in the atmosphere or changes in cosmic ray flux modulated by solar activity and geomagnetism, or possibly other factors, can at present be neglected or shown to be the overwhelming single driver of climate change in past centuries. Intensive data acquisition is required to further probe indications that the Earth's and Sun's magnetic fields may have significant bearing on climate change at certain time scales.  相似文献   

16.
This paper investigates the ionospheric and geomagnetic responses during the 28 March 2005 and 14 May 2005 Sumatran earthquakes using GPS and magnetometer stations located in the near zone of the epicenters. These events occurred during low solar and geomagnetic activity. TEC oscillations with periods of 5–10 min were observed about 10–24 min after the earthquakes and have horizontal propagation velocities of 922–1259 m/s. Ionospheric disturbances were observed at GPS stations located to the northeast of the epicenters, while no significant disturbances were seen relatively east and south of the epicenters. The magnetic field measurements show rapid fluctuations of 4–5 s shortly after the earthquake, followed by a Pc5 pulsation of 4.8 min about 11 min after the event. The correlation between the ionospheric and geomagnetic responses shows a good agreement in the period and time lag of the peak disturbance arrival, i.e. about 11–13 min after the earthquake.  相似文献   

17.
《Continental Shelf Research》1999,19(9):1143-1159
The Oder river discharge into the Pomeranian Bight of the Baltic Sea was investigated in a combined study using satellite data, numerical modelling and shipborne measurements. The aim was to understand the dynamical processes forming the freshwater distribution patterns during the prevailing winds. From an analysis of typical distribution patterns of the river discharge in relation to the main wind directions and in comparison to seasonal wind statistics, the two main transport directions were determined. The prevailing westerly winds produce an onshore transport and a downwind coastal jet which transports the river water along the Polish coast, in certain cases over a distance of 300 km to the Gdansk Bay. During a period of stable westerly winds in June 1994, the calculated time scale for a water transport over 250 km corresponded to the observed time of 12 d. In spring, the period of maximum river runoff, easterly winds dominate and transport occurs along the German coast into the Arkona Sea. The river water is guided by upwelling processes in front of the Polish coast. During occasional north-easterly winds stable plumes form in front of the Swine river mouth; this occurred in May 1991 for several days. The numerical model showed that the stability of the plume is caused by an interaction between the alignment of the coast, the large-scale circulation in the north, the buoyancy of the freshwater and the Coriolis effect. The underlying anticyclonic eddy is indicated by warm rings in a high resolution Landsat Thematic Mapper scene. From the different datasets the range of the spatial and temporal scales of a stable plume were determined. The volume varied between 0.14 and 0.9 km3, and the suspended matter and chlorophyll load between 1120 and 7200 t and 2.8 and 18 t, respectively. These values are important for ecological budget calculations in turnover process studies.  相似文献   

18.
This study characterized the magnetic property and levels of heavy metals of the topsoils near a cement plant. The concentrations of five selected heavy metals (Pb, Cu, Zn and Cd) were measured on 32 topsoil samples (0–20 cm) collected near a cement plant via inductively coupled plasma/mass spectroscopy (ICP-MS). The orders of enrichment factors (EF), on average, were Cd (7.3) > Cu (3) > Zn (2.9) > Pb (2.1), respectively. A self-organizing map (SOM) was applied to the concentrations of heavy metals for “correlation hunting”. Mineral magnetic concentration parameters, such as the specific magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χARM), saturation isothermal remanent magnetization (SIRM), together with interparametric ratios (such as IRM 100mT/SIRM, SIRM/χ, χARM/SIRM) show that ferrimagnetic, superparamagnetic (SP) and multi-domain (MD) minerals dominated the soils. The results of correlation analysis indicate that copper showed a significant correlation with χ, χARM and SIRM but such a relationship with χ, χARM and SIRM was only weakly identified for Zn, Cd and Pb.  相似文献   

19.
Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements—and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996–2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.  相似文献   

20.
Windsor–Essex County is a major cross-border truck and transportation route, with significant localized industrialization as well as rural and farming areas. Magnetic property measurements (in-field and laboratory susceptibility, frequency-dependent susceptibility, hysteresis properties, thermomagnetic and thermosusceptibility curves, anhysteretic and isothermal magnetizations) were made in order to determine the potential for using such variables to distinguish between natural and anthropogenic pollutants. In-field magnetic susceptibility measured on 324 soil sampling sites on a 0.5–2 km grid spacing through Windsor–Essex County ranged from 3.7 × 10 6 to 305.2 × 10 6 SI (average 36.2 ± 35.8 × 10 6 SI), and showed that high magnetic susceptibility values were obtained on soil sampling sites in and around the cities/towns of Windsor, Harrow, Olinda and Oakland and near the beaches of Point Pelee National Park (PPNP) and Deerbrook, whereas lower susceptibility values were observed in near the towns of Lakeshore and Essex. On this grid spacing, Highway 401 (the major truck route) did not show anomalous susceptibility values; however, closer (1–3 m) sampling on other roads did show anomalously high values, suggesting that the coarser grid spacing may have missed anomalies. Laboratory measurements indicated that the dominant magnetic mineral in the Windsor–Essex County soils is magnetite; however, the grain size is variable. Pseudo-single domain (PSD)–multidomain (MD) magnetite is generally found on beaches and in PPNP, whereas single domain (SD)–PSD magnetite has been found near the City of Windsor and other towns. While certain correlations exist between some anthropogenic activities and the measured magnetic susceptibility and magnetic property values, no overall correlation can be made. A variety of geologic and anthropogenic factors must be considered when interpreting the origin of the magnetic signal in a particular area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号