首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Relationships between the polar cap magnetic activity index PC and the magnetic storm Dst index have been studied for the magnetic storms with duration more 12 h and peak value Dst<?30 nT and, observed in 1998–2002 and 2004–2005. Along with PC index the geoeffective interplanetary electric field Em was also examined. It has been found that all examined storms, lying in range from ?30 to ?373 nT, started when the PC index and, correspondingly, the Em field firmly exceeded the threshold >2 mV/m. In particular, the “anomalous” magnetic storm on January 21–22, 2005 occurring under conditions of northward IMF BZ (Du et al., 2008) is usual phenomena fitted well with the threshold restriction owing to the large IMF By component input. The maximal storm depression (the peak value of Dst) is linearly related to the quantities Em and PC, averaged for the time interval from the storm beginning to the storm maximum. The correlation between Dst and PC is more steady and larger than correlation between Dst and Em, the latter being dependent on Em value (effect of “Dst saturation”). The moment of the firm descent of the Em and PC quantities below the threshold level ~2 mV/m is indicative of the depression damping and transition to the recovery phase. The results are consistent with the similar peculiarities revealed for substorms development (Troshichev and Janzhura, 2009) and support the conclusion that the PC index is a reliable proxy characterizing the solar wind energy having been entered into the magnetosphere.  相似文献   

2.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

3.
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSS) are two solar phenomena that produce large-scale structures in the interplanetary (IP) medium. CMEs evolve into interplanetary CMEs (ICMEs) and the HSS result in corotating interaction regions (CIRs) when they interact with preceding slow solar wind. This paper summarizes the properties of these structures and describes their geoeffectiveness. The primary focus is on the intense storms of solar cycle 23 because this is the first solar cycle during which simultaneous, extensive, and uniform data on solar, IP, and geospace phenomena exist. After presenting illustrative examples of coronal holes and CMEs, I discuss the internal structure of ICMEs, in particular the magnetic clouds (MCs). I then discuss how the magnetic field and speed correlate in the sheath and cloud portions of ICMEs. CME speed measured near the Sun also has significant correlations with the speed and magnetic field strengths measured at 1 AU. The dependence of storm intensity on MC, sheath, and CME properties is discussed pointing to the close connection between solar and IP phenomena. I compare the delay time between MC arrival at 1 AU and the peak time of storms for the cloud and sheath portions and show that the internal structure of MCs leads to the variations in the observed delay times. Finally, we examine the variation of solar-source latitudes of IP structures as a function of the solar cycle and find that they have to be very close to the disk center.  相似文献   

4.
We availed hourly data of four middle and high cut-off rigidity neutron monitors recorded over 21 years and then discussed various measures of the CR variability and simplified estimates of the CR anisotropy in relation to the Dst time history. The correlation of Dst with the prehistory of CR variability at these cut-offs is shown. A different distribution of the CR indices for 24 h before the sharp Dst decreases in comparison with that for geomagnetically quiet periods is found. The relation of CR variability with the solar wind speed appeared but neither with the solar wind density nor with the Bz component of the interplanetary magnetic field. The multiple regression of Dst with the prehistory of CR variability resulted to be significant, suggesting that the parameters describing CR variability/anisotropy are potentially useful to be implemented into the schemes of forecasting of geomagnetic activity, performed with interplanetary medium data obtained before their arrival at the Earth (e.g. at the L1 point).  相似文献   

5.
The evolutions of severe geomagnetic storms (Dst<−200 nT) during solar cycle 23 were examined. For each storm, certain timing landmarks (starting of increases of interplanetary total field B, its Bz component, Dst changes, etc.) were noted and from these, various antecedence intervals were calculated. It was noticed that the various delays varied in a very wide range from storm to storm. Thus, some storms had a warning of only 4 h at the ACE location, while others had a warning of up to 30 h. These variations do not depend upon the Sun–Earth transit time. Also, faster interplanetary structures do not necessarily give quicker or stronger Dst evolutions, though larger negative Bz seems to give stronger negative Dst, but not necessarily earlier.  相似文献   

6.
To study the relations of the polar cap (PC) magnetic activity (characterized by the PC index) to magnetic disturbances in the auroral zone (AL index) the behavior of 62 repetitive bay-like magnetic disturbances has been analyzed. It was found that the PC index, derived as a proxy of the geoeffective interplanetary electric field Em, starts to increase, on average, about 30 min ahead of the magnetic disturbance onset. Value of Em and PC~2 mV/m seems to be necessary for development of the repetitive bay-like disturbances with peak AL exceeding 400 nT. Growth phase duration (the time interval between the start of PC increase and AL sudden onset) and intensity of magnetic disturbances in the auroral zone (AL max) highly correlate with the PC growth rate. The growth phase reduces to a few minutes, if the PC index suddenly jumps above ~6–8 mV/m. The sharp development of Birkeland current wedge during expansion phase insignificantly influences the polar cap activity: the corresponding PC index increase does not exceed 10–20% of the PC value. It is concluded that the PC index may be considered as a convenient proxy of the solar wind energy input into the magnetosphere.  相似文献   

7.
The seven CAWSES interplanetary fast forward shocks and their geomagnetic effects during 2004–2005 have been analyzed. It is found that the arrival time of the shocks at Earth can be estimated within an accuracy of ~5 min. Furthermore, AL decreases are found to occur within 10 min of shock impingement on the magnetopause. It was also determined that there is a direct correlation between the interplanetary magnetic field southward directed (IMF Bs) prior to shock arrival and substorms triggered by the shocks. If the IMF is northward prior to shock arrival, the geomagnetic activity is present but is low. One interpretation of this result is that the preconditioning energy stored in the magnetotail leaks away rapidly. A correlation between substorm peak AL and shock strength (Mach number) has also been noted, which could imply that shock strength is important for the amount of energy released into the magnetosphere/ionosphere.  相似文献   

8.
During the declining phase of the last three solar cycles, secondary peaks have been detected 2–3 years after the main peak of sunspot number. The main peak of cycle 23 was in 2001, but a sudden increase of the solar activity occurred during the period October 17 to November 10, 2003 (the so-called Halloween storms). A similar storm occurred 1 year later, during the period October 3 to November 13, 2004. These events are considered as secondary peaks during the declining phase of cycle 23. Secondary peaks during declining phase of the last 10 solar cycles were detected by Gonzalez and Tsurutani [1990. Planetary and Space Science 38, 181–187]. During Halloween storm period, the sunspot area increased up to 1.11×10?9 hemisphere on October 19, and grow up to 5.69×10?9 hemisphere on October 30, 2003. Then it decreased to 1.11×10?9 hemisphere on November 4, 2003. Also, the radio flux of λ=10.7 cm increased from 120 sfu on October 19, to 298 sfu on October 26, 2003, then decreased to 168 sfu on November 4, 2003. Two eruptive solar proton flares were released on 26 and 28 October 2003, the latter being the most eruptive flare recorded since 1976 (values reaching X17/4B).The aim of this study is to follow the morphological and magnetic changes of the active region before, during, and after the production of high-energy flares. Furthermore, the causes of release of these eruptive storms have been discussed for the period, October–November 2003, during the declining phase of the solar cycle 23.  相似文献   

9.
特大地磁暴的一种行星际源:多重磁云   总被引:1,自引:0,他引:1       下载免费PDF全文
2001年3月31日观测到的大的多重磁云(Multi MC)事件造成了第23周太阳峰年(2000~2001)最大的地磁暴(Dst=-387nT). 通过分析ACE飞船的观测数据, 描述了这个多重磁云在1AU处的磁场和等离子体特征. 并且根据SOHO和GOES卫星的观测资料, 认证了它的太阳源. 在这次事件中, 由于多重磁云内部异常增强的南向磁场, 使之地磁效应变得更强, 它大大的延长了地磁暴的持续时间. 观测结果与理论分析表明, 多重磁云中子磁云的相互挤压使磁云内的磁场强度及其南向分量增强数倍, 从而加强了地磁效应. 因此, 研究认为多重磁云中子磁云之间的相互压缩是造成特大地磁暴的一种机制. 此外, 研究发现形成多重磁云的日冕物质抛射(CMEs)并不一定要来自同一太阳活动区.  相似文献   

10.
The basic characteristics of the global distribution for the corona plasma and magnetic field near 2.5 Rs are analyzed with the statistical and numerical methods for 136 Carrington Rotations (CRs) covering four different phases of solar activity. By using the observational data and the velocity distribution model in the corona, the statistical average distribution of the magnetic field, density and the coronal mass outputs are analyzed for the four different phases. Then, a numerical study of the global distribution near 2.5 Rs has been made by solving a self-consistent MHD system. Finally, the solar wind speed at 1 AU is given by mapping the speed at 2.5 Rs to that near 1 AU, and the comparison of the numerical results with the observational measurements and the simulation result of the Wang–Sheeley–Arge (WSA) model are made during more than 5 years. The numerical results indicate that the global distributions on the source surface of 2.5 Rs at different phases of solar activity could be used to predict the change of the solar wind in interplanetary space.  相似文献   

11.
The suggestion that the polar cap can completely disappear under certain northward IMF conditions is still controversial. We know that the size of the polar cap is strongly controlled by the interplanetary magnetic field (IMF). Under a southward IMF, the polar cap is usually large and filled with weak diffuse polar rain electrons. The polar cap shrinks under a northward IMF. Here we use the global auroral images and coincident particle measurements on May 15, 2005 to show that the discrete arcs (due to precipitation of both electrons and ions) expanded from the dayside oval to the nightside oval and filled the whole polar ionosphere after a long (8 h) and strong (~5–30 nT) northward IMF Bz, The observations suggested that the polar cap disappeared under a closed magnetosphere.  相似文献   

12.
利用第23太阳活动周中WIND和ACE资料,统计分析行星际扰动对不同水平地磁活动的影响,研究磁暴强度与不同行星际参数之间的相关性,结果发现:①从长期来看,地磁活动指数Dst与太阳风速度的相关性最好,相关性在太阳活动谷年时最高;②多磁暴时序叠加结果证实了导致小、中、强磁暴开始的经验行星际南向磁场条件,磁暴过程中行星际磁场...  相似文献   

13.
We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7–11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E×B drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between ~1900 and 2100 UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at ±20° geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of ~2–2.5 h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16 h.  相似文献   

14.
In November 2004, a major magnetic storm occurred, a lengthy portion of which was recorded by the Upper Atmospheric Radar Chain. On the 9th and 10th, the Jicamarca Radar detected the highest magnitude penetrating electric fields (±3 mV/m) and vertical drifts (±120 m/s) ever seen at this premiere facility. These large and variable drifts were highly correlated with the interplanetary magnetic and electric fields and created a double F layer on the dayside and unusual TEC behavior throughout the low-latitude zone. These solar wind-induced drifts both suppressed and generated irregularities at the magnetic equator at different times. Large-scale thermospheric disturbances were generated by high-latitude heating and tracked through the middle- to low-latitude zones where both parallel and perpendicular plasma drifts created major ionospheric changes. The auroral oval was located at a magnetic L shell of about three for many hours.  相似文献   

15.
The prediction of solar activity strength for solar cycles 24 and 25 is made on the basis of extrapolation of sunspot number spectral components. Monthly sunspot number data during the 1850–2007 interval (solar cycles 9–23) are decomposed into several levels and searched for periodicities by iterative regression in each level. For solar cycle 24, the peak is predicted in November 2013 with a sunspot number of 113.3. The cycle is expected to be weak, with a length of 133 mo (months) or 11.1 yr. The sunspot number maximum in cycle 25 is predicted to occur in April 2023 with a sunspot number 132.1 and a solar cycle length of 118 mo or 9.8 yr. Thus, solar cycle 24 is predicted to have an intensity 23% lower than cycle 23, and cycle 25 will be 5% lower than cycle 23.  相似文献   

16.
Applying spectral analysis to the Atlantic and Pacific hurricane time series, we found periodicities that coincide with the main sunspot and magnetic solar cycles. To assess the possibility that these periodicities could be associated with solar activity, we obtain correlations between hurricane occurrence and several solar activity-related phenomena, such as the total solar irradiance, the cosmic ray flux and the Dst index of geomagnetic activity. Our results indicate that the highest significant correlations are found between the Atlantic and Pacific hurricanes and the Dst index. Most importantly, both oceans present the highest hurricane–Dst correlations during the ascending part of odd solar cycles and the descending phase of even solar cycles. This shows not only the existence of a 22 yr cycle but also the nature of such periodicity. Furthermore, we found that the Atlantic hurricanes behave differently from the Pacific hurricanes in relation to the solar activity-related disturbances considered.  相似文献   

17.
We have investigated the solar activity signal in tree ring data from two locations in Chile. The tree ring time series extended over a period of ∼400 yr. Spectral and wavelet analysis techniques were employed. We have found evidence for the presence of the solar activity Schwabe (∼11 yr), Hale (∼22 yr), fourth-harmonic of the 208-yr Suess cycle (∼52 yr) and Gleissberg (∼80 yr) cycles. The Gleissberg cycle of tree ring data is in anti-phase with solar activity. Wavelet and cross-wavelet techniques revealed that the periods found are intermittent, possibly because solar activity signals observed in tree rings are mostly due to solar influence on local climate (rainfall, temperature, and cloud cover) where trees grow up. Further, cross-wavelet analysis between sunspot and tree ring time series showed that the cross power around the 11 yr solar cycle is more significant during periods of high solar activity (grand maximum) than during periods of low solar activity (grand minimum). As Glaciar Pio XI is practically at the Pacific Ocean level, the tree-ring response may be stronger due to the heating of the Pacific Ocean water following an increase of the solar radiation incidence rather than at the higher altitudes of Osorno region.  相似文献   

18.
We present a study of ionospheric and thermospheric response during a November 9–10, 2004 major geomagnetic storm event (DsT ~?300 nT). We utilize the North American sector longitude chain of incoherent scatter radars at Arecibo, Millstone Hill, and Sondrestrom, operating as part of a coordinated international mesosphere/lower thermosphere coupling study experiment. Total electron content (TEC) determinations from global positioning system (GPS) ground receivers, ground magnetometer traces from the Canadian CANOPUS array, Defense Meteorological Satellite Platform (DMSP) topside data, and global convection patterns from the SuperDARN radar network are analyzed to place the detailed radar data in proper mesoscale context. The plasmaspheric boundary layer (PBL) expanded greatly in the dusk sector during ring current intensification to span more than 25° of magnetic latitude, reaching as far south as 30° invariant latitude. Strong sub-auroral polarization stream velocities of more than 1 km/s were accompanied by large upwards thermal O+ fluxes to the overlying magnetosphere. The large PBL expansion subsequently exposed both Millstone Hill and Sondrestrom to the auroral convection pattern, which developed a complex multicell and reverse convection response under strongly northward IMF conditions during a period of global interplanetary electric field penetration. Large traveling atmospheric and ionospheric disturbances caused significant neutral wind and ion velocity surges in the mid-latitude and tropical ionosphere and thermosphere, with substorm activity launching equatorward neutral wind enhancements and subsequent mid-latitude dynamo responses at Millstone Hill. However, ionosphere and thermosphere observations at Arecibo point to significant disturbance propagation modification in the post-dusk sector PBL region.  相似文献   

19.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

20.
A study on variability of the equatorial ionosphere was carried out at fixed heights below the F2 peak for two different levels of solar activity. The study covered height range of 100 km up to the peak of F2 layer using a real height step increase of 10 km. The variability index used is the percentage ratio of standard deviation over the average value for the month. Daytime minimum variability of between 3% and 10% was observed at height range of about 150–210 km during low solar activity and between 2% and 7% at height range of 160–220 km during high solar activity. The nighttime maximum of between 70% and 187% was observed at height range of about 210–250 km during low solar activity and between 42% and 127% at height range of 210–250 km during high solar activity. The height range at which daytime minimum was observed falls within the F1 height of the ionosphere. The result obtained is consistent with previous works carried out in the low latitude locations for American sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号