首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GPS-derived total electron content (TEC) and NmF2 are measured at the Chung-Li ionosonde station (24.9°N, 121°E) in order to study the variations in slab thickness (τ) of the ionosphere at low-latitudes ionosphere during 1996–1999, corresponding to half of the 23rd solar cycle. This study presents the diurnal, seasonal, and solar flux variations in τ for different solar phases. The seasonal variations show that the average daily value is greater during summer and the reverse is true during equinox in the equatorial ionization anomaly (EIA) region. Moreover, the τ values are greater during the daytime (0800–1600 LT) and nighttime (2000–0400 LT) for summer and winter, respectively. The diurnal variation shows two abnormal peaks that appear during the pre-sunrise and post-sunset hours. The peak values decrease as the sunspot number increases particularly for the pre-sunrise peak. Furthermore, the variation in the F-peak height (hpF2) indicates that a thermospheric wind toward the equator leads to an increase in hpF2 and an enhancement in τ during the pre-sunrise period. Furthermore, the study shows the variations of τ values for different geophysical conditions such as the geomagnetic storm and earthquake. A comprehensive discussion about the relation between τ and the geophysical events is provided in the paper.  相似文献   

2.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

3.
—The 4-season (12-month) running means of temperatures at five atmospheric levels (surface, 850–300 mb, 300–100 mb, 100–50 mb, 100–30 mb) and seven climatic zones (60°N–90°N, 30°N–60°N, 10°N–30°N, 10°N–10°S, 10°S–30°S, 30°S–60°S, 60°S–90°S) showed QBO (Quasi-biennial Oscillation), QTO (Quasi-triennial Oscillation) and larger periodicities. For stratosphere and tropopause, the temperature variations near the equator and North Pole somewhat resembled the 50mb low latitude zonal winds, mainly due to prominent QBO. For troposphere and surface, the temperature variations, especially those near the equator, resemble those of eastern equatorial Pacific sea-surface temperatures, mainly due to prominent QTO. In general, the temperature trends in the last 35 years show stratospheric cooling and tropospheric warming. But the trends are not monotonic. For example, the surface trends were downward during 1960–70, upward during 1970–82, downward during 1982–85 and upward thereafter. Models of green-house warming should take these non-uniformities into account.  相似文献   

4.
The deterministic chaotic behaviour of ionosphere, over Indian subcontinent falling under equatorial/low latitude region, ?0.3 to 22.19°N (geomagnetic), was studied using GPS-TEC time series. The values of Lyapunov exponent are low at Thiruvananthapuram and Agatti (?0.30 and 2.38°N, geomagnetic, respectively), and thereafter increase through Bangalore and Hyderabad (4.14 and 8.54°N, geomagnetic, respectively), and attain maximum at Mumbai (10.09°N, geomagnetic), which is near/at the edge of an anomaly crest. The values of correlation dimension computed for TEC time series are in the range 3.1–3.6, which indicate that equatorial/low latitude ionosphere can be described with four variables. Entropy values estimated for TEC time series show no appreciable latitudinal variabilites. The values of non-linear prediction error exhibit a trough, around the latitude sector, 4.14–16.15°N (Geomagnetic). Based on the values of the above quantifiers, the features of chaotic behaviour of equatorial/low latitude ionosphere are briefly discussed.  相似文献   

5.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

6.
Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25/35 min) in F region vertical plasma drift, Vz in the interval 0047/0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.  相似文献   

7.
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L~5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.  相似文献   

8.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

9.
The equatorial ionosphere responses over Brazil to two intense magnetic storms that occurred during 2001 are investigated. The equatorial ionization anomaly (EIA) and variations in the zonal electric field and meridional winds at different storms phases are studied using data collected by digisondes and GPS receivers. The difference between the F layer peak density (foF2) at an equatorial and a low latitude sites was used to quantify the EIA; while the difference between the true heights (hF) at the equatorial and an off-equatorial site was used to calculate the magnetic meridional winds. The vertical drift was calculated as dhF/dt. The results show prompt penetration electric fields causing unusual early morning development of the EIA, and disturbed dynamo electric field producing significant modification in the F region parameters. Variations to different degrees in the vertical drift, the thermospheric meridional winds and the EIA developments were observed depending on the storm phases.  相似文献   

10.
Electron and ion temperature (Te and Ti) data observed using RPA on board SROSS C2 satellite are investigated for the variation with local time, season, latitude (0–30°N geographic) over a half of a solar cycle (1995–2000). The nighttime Te (∼1000 K) is independent of the season and the solar flux whereas Ti exhibits positive correlation with the solar activity during all three seasons. In the early morning hours during summer, Te is higher by ∼500 K than other seasons in all three levels of solar activity. During winter and equinox in the early morning hours, Te and Ti are higher during low solar activity, showing a negative correlation with solar flux. During daytime, the Ti increases with the solar flux in winter and summer solstice, but is independent in equinox. IRI underestimates Te and Ti during the morning period by 50–75% in the equatorial and near-equatorial stations during all levels of solar activities.  相似文献   

11.
Ionospheric data observed in 30 stations located in 3 longitude sectors (East Asia/Australia Sector, Europe/Africa Sector and America/East Pacific Ocean Sector) during 1974–1986 are used to analyse the characteristics of semiannual variation in the peak electron density of F2 layer (NmF2). The results indicate that the semiannual variation of NmF2 mainly presents in daytime. In nighttime, except in the region of geomagnetic equator between the two crests of ionospheric equatorial anomaly, NmF2 has no obvious semiannual variation. In the high latitude region, only in solar maxima years and in daytime, there are obvious semiannual variations of NmF2. The amplitude distribution of the semiannual variation of daytime NmF2 with latitude has a “double-humped structure”, which is very similar to the ionospheric equatorial anomaly. There is asymmetry between the Southern and the Northern Hemispheres of the profile of the amplitude of semiannual variation of NmF2 and longitudinal difference. A new possible mechanism of semiannual variation of NmF2 is put forward in this paper. The semiannual variation of the diurnal tide in the lower thermosphere induces the semiannual variation of the amplitude of the equatorial electrojet. This causes the semiannual variation of the amplitude of ionospheric equatorial anomaly through fountain effect. This process induces the semiannual variation of the low latitude NmF2.  相似文献   

12.
Longitudinal and local time variations in the structure of the equatorial anomaly under high solar activity in the equinox are considered according to the Intercosmos-19 topside sounding data. It is shown that the anomaly begins to form at 0800 LT, when the southern crest is formed. The development of the equatorial anomaly is associated with well-known variations in the equatorial ionosphere: a change in the direction of the electric field from the west to the east, which causes vertical plasma drift W (directed upward) and the fountain effect. At 1000 LT, both anomaly crests appear, but they become completely symmetrical only by 1400 LT. The average position of the crests increases from I = 20° at 1000 LT to I = 28° at 1400 LT. The position of the crests is quite strong, sometimes up to 15°, varies with longitude. The foF2 value above the equator and the equatorial anomaly intensity (EAI) at 1200–1400 LT vary with the longitude according to changes in the vertical plasma drift velocity W. At this time, four harmonics are observed in the longitudinal variations of W, foF2, and EAI. The equatorial anomaly intensity increases to the maximum 1.5–2 h after the evening burst in the vertical plasma drift velocity. Longitudinal variations of foF2 for 2000–2200 LT are also associated with corresponding variations in the vertical plasma drift velocity. The equatorial anomaly intensity decreases after the maximum at 2000 LT and the crests decrease in size and shift towards the equator, but the anomaly is well developed at midnight. On the contrary, after midnight, foF2 maxima in the region of the anomaly crests are farther from the equator, but this is obviously associated with the action of the neutral wind. At 0200 LT, in contrast to the morning hours, only the northern crest of the anomaly is clearly pronounced. Thus, in the case of high solar activity during the equinoxes, a well-defined equatorial anomaly is observed from 1000 to 2400 LT. It reaches the maximum at 2000 LT.  相似文献   

13.
The electron density profiles retrieved from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellite Radio Occultation (RO) observations during 2008 are used to derive ionospheric upper transition height, where the density of O+ is equal to that of light ions (mainly H+ and He+). It is found that the ionosphere upper transition height is very low, with significant local time, latitude and seasonal variations, during the extremely low solar minimum of 2008. The transition height is higher in the daytime than at night, except over middle latitude region of winter hemisphere, where the transition height has minimum in the morning. There is a pronounced peak over equator for all seasons. The transition height is higher in summer than in winter hemisphere. Our results have comparability with C/NOFS satellite observations around the equatorial region during June–August of 2008. However, the IRI model gives much higher transition height than those from COSMIC and cannot reproduce its latitude and season variations well during 2008.  相似文献   

14.
The F2-layer response to the moderate storm of 5–7 April 2010 was investigated using data from two equatorial stations (Ilorin: lat. 8.5°N, 4.5°E; Kwajalein: lat. 9°N, long. 167.2°E) and mid-latitude (San Vito: lat. 40.6°N, long. 17.8°E; Pruhonice: lat. 50°N, long. 14.6°E). Before storm commencement, enhancement, and depletion of NmF2 values were observed in the equatorial and mid-latitude stations, respectively, indicating the latitudinal dependence of the pre-storm event. All the stations with the exception of Kwajalein show positive phase in NmF2 response at the storm onset stage. Positive phase in NmF2 continues over Ilorin and appears on the daytime ionosphere of Kwajalein on 6 April, whereas negative phase suppressed the positive feature in Pruhonice and San Vito until the recovery condition. The differences in the response of F2-layer to the storm for the two equatorial stations were attributed to their longitudinal differences. On the average, both the AE and D st indices revealed poor correlation relationship. More studies are required to ascertain this finding.  相似文献   

15.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

16.
The ionospheric responses to a large number (116) of moderate (?50≥Dst>?100 nT) geomagnetic storms distributed over the period (1980–1990) are investigated using total electron content (TEC) data recorded at Calcutta (88.38°E, 22.58°N geographic, dip: 32°N). TEC perturbations exhibit a prominent dependence on the local times of main phase occurrence (MPO). The storms with MPO during daytime hours are more effective in producing larger deviations and smaller time delays for maximum positive deviations compared to those with nighttime MPO. Though the perturbations in the equinoctial and winter solstitial months more or less follow the reported climatology, remarkable deviations are detected for the summer solstitial storms. Depending on the local times of MPO, the sunrise enhancement in TEC is greatly perturbed. The TEC variability patterns are interpreted in terms of the storm time modifications of equatorial electric field, wind system and neutral composition.  相似文献   

17.
Surface partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC), temperature, salinity and chlorophyll a (Chl a) at grid stations were measured in the southern Yellow Sea (SYS; 32–37°N to 120–125°E) during four cruises conducted in March 2005 (winter), April 2006 (spring), May 2005 (late spring), and July 2001 (summer). Factors influencing pCO2 spatial and seasonal variations are explored.Surface seawater pCO2 during winter was oversaturated with respect to the atmosphere in the entire study area (380–606 μatm), primarily due to the complete mixing of the water column in winter which brought CO2-enriched bottom water to the surface. However, during spring, surface pCO2 in the central SYS was undersaturated relative to the atmosphere with a low range between 274 and 408 μatm. The net CO2 sink in the central SYS was mainly due to the consumption of CO2 by the strong phytoplankton activity and to the weak water stratification, whereas surface pCO2 in the nearshore area was oversaturated for the atmosphere owing to vertical mixing and terrestrial inputs. During summer, surface pCO2 varied between 125 and 599 μatm over the entire sampling area. In the Changjiang (Yangtze River) Diluted Water (CDW) area, surface pCO2 was undersaturated because of the nutrient inputs via the Changjiang, triggering strong phytoplankton activity, whereas surface pCO2 was oversaturated in other areas. We conclude that the nearshore area behaves as a source of atmospheric CO2 during the entire investigated periods owing to vertical mixing and terrestrial inputs as well as upwelling, whereas the central region generally shifts from a source of CO2 in March to a sink in the remaining time of the investigation.  相似文献   

18.
The variation of plasmaspheric electron content (PEC) is an important parameter for studying the effects of space weather events in the low latitude ionosphere. In the present study, the vertical TEC (VTEC) measurements obtained from co-located dual-frequency Global Positioning System (GPS) and Coherent Radio Beacon Experiment (CRABEX) systems have been used. The daytime PEC variations under different geophysical conditions have been estimated (around the magnetic equator) over the Indian sector, for the first time. The first observations of the nighttime PEC variations over the Indian sector are also estimated from the simultaneous measurements of Faraday rotation, differential Doppler and modulation phase delay made using the CRABEX system on-board the Indian geostationary satellite GSAT2. The study shows that the PEC varies over a range of 10–22% (of the total electron content (TEC)) during daytime of magnetically quiet period. There is an increase in PEC with latitude during magnetically quiet period. During a magnetically disturbed period of 9 November 2004, the PEC increased to ∼30% of the TEC over the magnetic equatorial location of Trivandrum (8.5°N, 76.9°E, dip 0.5°N), while at Bangalore (13°N, 78°E, dip 10°N) it showed a large depletion. The implications of the new observations are discussed.  相似文献   

19.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

20.
The major sudden stratospheric warming (SSW) events of 2003–04 and 2005–06 are considered to investigate changes in equatorial convection due to circulation changes associated with the SSW events. It is observed that the SSW events are accompanied by a considerable decrease in Outgoing Longwave Radiation (OLR), a proxy for tropical convection, over equatorial latitudes (15°N–15°S) in the Indonesian sector (90°E–150°E). However, unlike noted by earlier observations, the zonal mean OLR does not show any notable relationship with the SSW events. It can be explained from the latitude–longitude map of potential vorticity (PV) at 100 hPa, which shows a tongue of high PV emanating from high latitudes towards equator and converges in the longitude band of 90°E–150°E on the day of peak warming at 1 hPa in the case of 2003–04 and 10 hPa in the case of 2005–06. The latitude-height map of Eliassen–Palm (EP) vector and its divergence show convergence of EP flux in the upper troposphere at latitudes even lower than 20°N on these days. Further, vertical winds computed from the convergence of momentum flux are upward indicating convective activity at low-latitudes and downward at mid-latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号